Advertisement

The study of high polymers by nuclear magnetic resonance

  • W. P. Slichter
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 1/1)

Keywords

Nuclear Magnetic Resonance Line Width Natural Rubber High Polymer Chain Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alford, S., and M. Dole: Specific heat of synthetic high polymers. VI. A study of the glass transition in polyvinyl chloride. J. Amer. chem. Soc. 77, 4774–4777 (1955).CrossRefGoogle Scholar
  2. 2.
    Alpert, N. L.: Studies of the solid state by means of nuclear magnetism. Phys. Rev. 72, 637–638 (1947).CrossRefGoogle Scholar
  3. 3.
    -: Study of phase transitions by means of nuclear magnetic resonance phenomena. Phys. Rev. 75, 398–410 (1949).Google Scholar
  4. 4.
    Anderson, H. L.: Precise measurement of the gyromagnetic ratio of He3. Phys. Rev. 76, 1460–1470 (1949).Google Scholar
  5. 5.
    Andrew, E. R., and R. Bersohn: Nuclear magnetic resonance line shape for a triangular configuration of nuclei. J. chem. Physics 18, 159–161 (1950).Google Scholar
  6. 6.
    -: Molecular motion in certain solid hydrocarbons. J. chem. Phys. 18, 607–618 (1950).Google Scholar
  7. 7.
    -, and R. G. Eades: A nuclear magnetic resonance investigation of solid cyclohexane. Proc. roy. Soc. (Lond.) A 216, 398–412 (1953).Google Scholar
  8. 8.
    --: A nuclear magnetic resonance investigation of three solid benzenes. Proc. roy. Soc. (Lond.) A 218, 537–552 (1953).Google Scholar
  9. 9.
    -Nuclear magnetic resonance. Cambridge: The University Press 1955.Google Scholar
  10. 10.
    Baker, W. O., and C. S. Fuller: Macromolecular disorder in linear polyamides. Relation of structure to physical properties of copolyamides. J. Amer. chem. Soc. 64, 2399–2407 (1942).Google Scholar
  11. 11.
    Banas, E. M., B. A. Mrowca and E. Guth: Nuclear magnetic relaxation in natural and synthetic rubbers. Phys. Rev. 98, 265 (1955).Google Scholar
  12. 12.
    --: Nuclear spin-spin relaxation time in polymers. Phys. Rev. 98, 1548 (1955).Google Scholar
  13. 13.
    Bloch, F., W. W. Hansen and M. Packard: The nuclear induction experiment. Phys. Rev. 70, 474–485 (1946).Google Scholar
  14. 14.
    Bloembergen, N., E. M. Purcell and R. V. Pound: Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73, 679–712 (1948).CrossRefGoogle Scholar
  15. 15.
    Bunn, C. W.: Molecular structure and rubber-like elasticity. III. Molecular movements in rubber-like polymers. Proc. roy. Soc. (Lond.) A 180, 82–99 (1942).Google Scholar
  16. 16.
    -, and E. V. Garner: The crystal structures of two polyamides (“Nylons”). Proc. roy. Soc. (Lond.) A 189, 39–68 (1947).Google Scholar
  17. 17.
    -The study of high-polymer structure by X-ray diffraction methods. J. chem. Soc. 1947, 297–306.Google Scholar
  18. 18.
    -, and E. R. Howells: Structure of molecules and crystals of fluorocarbons. Nature (Lond.) 174, 549–551 (1954).Google Scholar
  19. 19.
    Carey, R. H., E. F. Schulz and G. J. Dienes: Mechanical properties of polyethylene. Ind. Eng. Chem. 42, 842–847 (1950).CrossRefGoogle Scholar
  20. 20.
    Carr, H. Y., and E. M. Purcell: Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954).CrossRefGoogle Scholar
  21. 21.
    Collins, R. L.: Crystallinity of polyethylene by nuclear resonance. Bull. Amer. phys. Soc. 1, 216 (1956).Google Scholar
  22. 22.
    -: Nuclear spin resonance line width measurements of polyethylene. Bull. Amer. phys. Soc. 2, 103 (1957); J. Polymer Sci. 27, 67–74 (1958).Google Scholar
  23. 23.
    Deutsch, K., E. A. W. Hoff and W. Reddish: Relation between structures of polymers and their dynamic mechanical and electrical properties. I. Some alpha-substituted acrylic ester polymers. J. Polymer Sci. 13, 565–582 (1954).Google Scholar
  24. 24.
    Evans, A. G., and M. Polanyi: Steric hindrance and heats of formation. Nature (Lond.) 152, 738–740 (1943).Google Scholar
  25. 25.
    Flom, D. G., and N. T. Porile: Friction of teflon sliding on teflon. J. appl. Phys. 26, 1088–1092 (1955).CrossRefGoogle Scholar
  26. 26.
    Flory, P. J.: Principles of polymer chemistry. p. 458. Ithaca: Cornell University Press 1953.Google Scholar
  27. 27.
    Fox, T. G., and P. J. Flory: Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. appl. Phys. 21, 581–591 (1950).CrossRefGoogle Scholar
  28. 28.
    Fujiwara, S., A. Amamiya and K. Shinohara: Nuclear magnetic resonance in irradiated polyethylene. J. chem. Phys. 26, 1343 (1957).CrossRefGoogle Scholar
  29. 29.
    Fuller, C. S., C. J. Frosch and N. R. Pape: X-ray examination of poly-isobutylene. J. Amer. chem. Soc. 62, 1905–1913 (1940).Google Scholar
  30. 30.
    Furukawa, G. T., R. E. McCoskey and G. J. King: Calorimetric properties of polytetrafluoroethylene (teflon) from 0 to 365‡ K. J. Res. nat. Bur. Standards 49, 273–278 (1952).Google Scholar
  31. 31.
    Gordy, W., W. V. Smith and R. F. Trambarulo: Microwave spectroscopy. pp. 371–373 (References). New York: D. Van Nostrand Company, Inc. 1953.Google Scholar
  32. 32.
    Gutowsky, H. S., G. B. Kistiakowsky, G. E. Pake and E. M. Purcell: Structural investigations by means of nuclear magnetism. I. Rigid crystal lattices. J. chem. Phys. 17, 972–981 (1949).Google Scholar
  33. 33.
    -, and G. E. Pake: Structural investigations by means of nuclear magnetism. II. Hindered rotation in solids. J. chem. Phys. 18, 163–170 (1950).Google Scholar
  34. 34.
    -, L. H. Meyer and R. E. McClure: Apparatus for nuclear magnetic resonance. Rev. sci. Instr. 24, 644–652 (1952).Google Scholar
  35. 35.
    --: The proton magnetic resonance in natural rubber. J. chem. Phys. 21, 2122–2126 (1953).Google Scholar
  36. 36.
    -, A. Saika, M. Takeda and D. E. Woessner: Proton magnetic resonance studies on natural rubber. II. Line shape and T 1 measurements. J. chem. Phys. 27, 534–542 (1957).CrossRefGoogle Scholar
  37. 37.
    Hahn, E. L.: Spin echoes. Phys. Rev. 80, 580–594 (1950).CrossRefGoogle Scholar
  38. 38.
    Holroyd, L. V., R. S. Codringron, B. A. Mrowca and E. Guth: Nuclear magnetic resonance study of transitions in polymers. J. appl. Phys. 22, 696 to 705 (1951).CrossRefGoogle Scholar
  39. 39.
    Honnold, V. R., F. McCaffrey and B. A. Mrowca: Studies of rubber-like polymers by nuclear magnetism. J. appl. Phys. 25, 1219–1223 (1954).CrossRefGoogle Scholar
  40. 40.
    Jenckel, E.: Die Einfriertemperatur hochmolekularer Gläser und ihr chemischer Aufbau. Kolloid-Z. 100, 163–170 (1942).CrossRefGoogle Scholar
  41. 41.
    Knappe, W., and A. Schulz: Die refraktometrische Bestimmung der Wirksamkeit von Weichmachern bei Polyvinylchlorid. Kunststoffe 41, 321–324 (1951).Google Scholar
  42. 42.
    Kojima, S., and S. Ogawa: Proton magnetic resonance absorption in cetyl alcohol. J. phys. Soc. Japan 8, 283–287 (1953).Google Scholar
  43. 43.
    Kubo, R., and K. Tomita: A general theory of magnetic resonance absorption. J. phys. Soc. Japan 9, 888–919 (1954).Google Scholar
  44. 44.
    Liquori, A. M.: Molecular configurations of stretched polyisobutylene. Acta crystallogr. (Lond.) 8, 345–347 (1955).Google Scholar
  45. 45.
    Lowe, I. J., L. O. Brown and R. E. Norberg: Nuclear magnetic relaxation times in polyethylene. Bull. Amer. phys. Soc. 30, 16 (1955).Google Scholar
  46. 46.
    Mandelkern, L., M. Hellman, D. W. Brown, D. E. Roberts and F. A. Quinn jr.: The melting transition of polymethylene. J. Amer. chem. Soc. 75, 4093–4094 (1953).CrossRefGoogle Scholar
  47. 47.
    -, G. M. Martin and F. A. Quinn jr.: Glass temperatures of polychlorotrifluoroethylene, polyvinylidene fluoride, and their copolymers. Bull. Amer. phys. Soc. 1, 123 (1956); J. Res. nat Bur. Standards 58, 137–143 (1957).Google Scholar
  48. 48.
    Marx, P., and M. Dole: Specific Heat of synthetic high polymers. V. A study of the order-disorder transition in Polytetrafluoroethylene. J. Amer. chem. Soc. 77, 4771–4774 (1955).CrossRefGoogle Scholar
  49. 49.
    McCall, D. W., and W. P. Slichter: Molecular motion in polyethylene. J. Polymer Sci. 26, 171–186 (1957); Bull. Amer. phys. Soc. 2, 125 (1957).Google Scholar
  50. 50.
    Miller, R. L.: The nuclear magnetic resonance of polymers. Bull. Amer. phys. Soc. 2, 125 (1957); R. C. Rempel, H. E. Weaver, R. H. Sands and R. L. Miller; Nuclear magnetic resonance studies of polyethylene. J. appl. Phys. 28, 1082–1089 (1957).Google Scholar
  51. 51.
    Mrowca, B. A., L. V. Holroyd and E. Guth: Study of high polymers by nuclear magnetism. II. Line widths through transition temperatures. Phys. Rev. 79, 1026–1027 (1950).CrossRefGoogle Scholar
  52. 52.
    Newman, R.: Proton magnetic resonance in polyethylene. J. chem. Phys. 18, 1303–1304 (1950).Google Scholar
  53. 53.
    Nielsen, L. E., R. Buchdahl and G. C. Claver: Molecular structure of styrene-butadiene copolymers. Dynamic mechanical measurements. Ind. Eng. Chem. 42, 341–345 (1951).Google Scholar
  54. 54.
    Nishioka, A., H. Komatsu and Y. Kakiuchi: Nuclear magnetic resonance in some crystalline polymers. J. phys. Soc. Japan 12, 283–285 (1957).Google Scholar
  55. 55.
    Nolle, A. W.: Nuclear magnetic resonance relaxation times for polyisobutylene in carbon tetrachloride solution. Phys. Rev. 98, 1560 (1955).Google Scholar
  56. 56.
    Odajima, A., J. Sohma and M. Koike: Line-width transition of the proton magnetic resonance in polymers. J. chem. Phys. 23, 1959–1960 (1955).CrossRefGoogle Scholar
  57. 57.
    ---: Proton magnetic resonance in chain polymers. J. phys. Soc. Japan 12, 272–282 (1957).Google Scholar
  58. 58.
    Oshima, R., and H. Kusumoto: Effect of elongation on the proton magnetic resonance of natural rubber. J. chem. Phys. 24, 913 (1956).Google Scholar
  59. 59.
    Pake, G. E.: Nuclear resonance absorption in hydrated crystals: Fine structure of the proton line. J. chem. Phys. 16, 327–336 (1948).CrossRefGoogle Scholar
  60. 60.
    -: Fundamentals of nuclear magnetic resonance absorption. Amer. J. Phys. 18, 438–452, 473–486 (1950).Google Scholar
  61. 61.
    -: Remarks reported in Disc. Faraday Soc. 19, 252 (1955).Google Scholar
  62. 62.
    Patnode, W., and W. J. Scheiber: The density, thermal expansion, vapor pressure, and refractive index of styrene, and the density and thermal expansion of polystyrene. J. Amer. chem. Soc. 64, 3449–3451 (1939).Google Scholar
  63. 63.
    Pound, R. V., and W. D. Knight: A radiofrequency spectrograph and simple magnetic field meter. Rev. sci. Instr. 21, 219–225 (1950).CrossRefGoogle Scholar
  64. 64.
    Powles, J. G., and H. S. Gutowsky: Proton magnetic resonance of the CH3 group. I. Investigation of six tetrasubstituted methanes. J. chem. Phys. 21, 1695 to 1703 (1953).Google Scholar
  65. 65.
    --: Proton magnetic resonance of the CH3 group. III. Reorientation mechanism in solids. J. chem. Phys. 23, 1692–1699 (1955).CrossRefGoogle Scholar
  66. 66.
    -: Nuclear magnetic resonance absorption in polyisobutylene. Proc. phys. Soc. (Lond.) 69, 281–292 (1956).Google Scholar
  67. 67.
    -: Nuclear magnetic resonance absorption in polymethyl methacrylate and polymethyl α-chloroacrylate. J. Polymer Sci. 22, 79–93 (1956).Google Scholar
  68. 68.
    Quinn jr., F. A., D. E. Roberts and R. N. Work: Volume-temperature relationship for the room temperature transition in teflon. J. appl. Phys. 22, 1085–1086 (1951).CrossRefGoogle Scholar
  69. 69.
    Rehner jr., J.: Heat conduction and molecular structure in rubber-like polymers. J. Polymer Sci. 2, 263–274 (1947).Google Scholar
  70. 70.
    Richards, R. B.: Polyethylene-structure, crystallinity, and properties. J. appl. Chem. 1, 370–376 (1951).Google Scholar
  71. 71.
    Richards, R. E., and J. A. S. Smith: Nuclear magnetic resonance spectra of some acid hydrates. Trans. Faraday Soc. 47, 1261–1274 (1951).CrossRefGoogle Scholar
  72. 72.
    Rigby, H. A., and C. W. Bunn: A room-temperature transition in polytetra-fluoroethylene. Nature (Lond.) 164, 583 (1949).Google Scholar
  73. 73.
    Rochow, E. G., and H. G. Leclair: On the molecular structure of methyl silicone. J. inorg. nucl. Chem. 1, 92–111 (1955).CrossRefGoogle Scholar
  74. 74.
    Rogers, S. S., and L. Mandelkern: Glass formation in polymers. I. The glass transitions of poly-(n-alkyl methacrylates). J. phys. Chem. 61, 985–990 (1957).Google Scholar
  75. 75.
    Rushworth, F. A.: Nuclear magnetic resonance absorption in anthracene. J. chem. Phys. 20, 920–921 (1952).CrossRefGoogle Scholar
  76. 76.
    Schildknecht, C. E.: Vinyl and related polymers. pp. 142–145. New York: John Wiley and Sons, Inc. 1952.Google Scholar
  77. 77.
    Schmieder, K., and K. Wolf: Mechanische Relaxationserscheinungen an Hochpolymeren (Beziehungen zur Struktur). Kolloid-Z. 134, 149–189 (1953).CrossRefGoogle Scholar
  78. 78.
    Slichter, W. P.: Proton magnetic resonance in polyamides. J. appl. Phys. 26, 1099–1103 (1955).CrossRefGoogle Scholar
  79. 79.
    -: On the morphology of highly crystalline polyethylene. J. Polymer Sci. 21, 141–143 (1956).Google Scholar
  80. 80.
    -: Nuclear magnetic resonance in some fluorine derivatives of polyethylene. J. Polymer Sci. 24, 173–188 (1957).Google Scholar
  81. 81.
    -and D. W. McCall: Note on the degree of crystallinity in polymers as found by nuclear magnetic resonance. J. Polymer Sci. 25, 230–234 (1957).Google Scholar
  82. 82.
    Smith, J. A. S.: A nuclear resonance investigation of polytetrafluoroethylene. Disc. Faraday Soc. 19, 207–215 (1955).CrossRefGoogle Scholar
  83. 83.
    Takeda, M., and H. S. Gutowsky: Proton magnetic resonance of solid symtetrachloro and tetrabromoethane. J. chem. Phys. 26, 577–579 (1957).Google Scholar
  84. 84.
    Tanaka, K., K. Yamagata and S. Kittata: Nuclear magnetic resonance of high polymers (phase transition of P. V. A. Fibers). Bull. chem. Soc. Japan 29, 843–844 (1956).Google Scholar
  85. 85.
    Ueberreiter, K.: über das Einfrieren normaler Flüssigkeiten und Flüssigkeiten mit „fixierter“ Struktur wie Kautschuk und Kunstharze. Z. physik. Chem. B 45, 361–373 (1940).Google Scholar
  86. 86.
    Vleck, J. H. van: The dipolar broadening of magnetic resonance lines in crystals. Phys. Rev. 74, 1168–1183 (1948).Google Scholar
  87. 87.
    Watkins, G. D., and R. V. Pound: An improved R. F. Spectrometer: g-factor ratios Li7/Li6 and Cl35/Cl37. Phys. Rev. 82, 343 (1951).Google Scholar
  88. 88.
    Wiley, R. H., and G. M. Brauer: Refractometric determination of second-order temperatures in polymers. II. Some acrylic, vinyl halide and styrene polymers. J. Polymer Sci. 3, 455–461 (1948).Google Scholar
  89. 89.
    --: Specific refractivity-temperature data for polyvinyl acetate and polybutyl acrylate. J. Polymer Sci. 4, 351–357 (1949).Google Scholar
  90. 90.
    Wilson, C. W., III, and G. E. Pake: Nuclear magnetic resonance determination of degree of crystallinity in two polymers. J. Polymer Sci. 10, 503 to 505 (1953).Google Scholar
  91. 91.
    --: Nuclear magnetic relaxation in polytetrafluoroethylene and poly-ethylene. J. chem. Phys. 27, 115–122 (1957).Google Scholar
  92. 92.
    Würstlin, F.: Einfriererscheinungen und chemische Konstitution, chapter in Die Physik der Hochpolymeren, edited by H. A. Stuart. pp. 639–672 (References). Berlin: Springer 1955.Google Scholar

Copyright information

© Springer-Verlag 1958

Authors and Affiliations

  • W. P. Slichter
    • 1
  1. 1.Bell Telephone Laboratories, IncorporatedMurray HillUSA

Personalised recommendations