Advertisement

The production of mechanical energy from different forms of chemical energy with homogeneous and cross-striated high polymer systems

  • W. Kuhn
  • A. Ramel
  • D. H. Walters
  • G. Ebner
  • H. J. Kuhn
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 1/4)

Abstract

Changes of shape of macromolecules produced with chemical agents are translated to a macroscopic scale and used for the transformation of chemical energy into mechanical energy with a three-dimensional network of cross-linked filament molecules.

Several high polymer systems are discussed:
  1. 1.

    “Homogeneous pH-muscle” reacting with contraction and dilation to pH changes in the embedding-fluid.

     
  2. 2.

    “Cross-striated pH-muscle” with length changes exceeding 100% at constant diameter.

     
  3. 3.

    “Redox-muscle” reacting with length changes to oxidation and reduction processes.

     
  4. 4.

    “Ca”- or “Cu-precipitation-muscle” reacting with length changes to addition and elimination of Calcium or Copper ions.

     

Investigations of the Donnan-equilibrium between the gel and embedding-fluid show theoretically and experimentally that stretching of the pH-muscle is associated with increased H+-ion activity in the embedding-fluid, and contraction with decreased H+-ion activity in the same fluid; the free chemical energy expended for a chemically-induced stretching of the system is exactly equal to the mechanical energy associated with the contraction.

In analogy to the change of the hydrogen ion activity of the embedding liquid when stretching the pH-muscle, a change of the redox-potential is observed when stretching the redox-muscle, and a change of the Cu++-ion activity in the embedding liquid when stretching the Cu++-precipitation muscle.

A quantitative transformation of chemical into mechanical energy is always possible if the degree of coiling of the network filaments of a gel can be changed by a chemical reaction; a general property of these gels being the reciprocal phenomenon that a mechanical stretching of the gel will be associated with an increase in the embedding medium of the reactants producing the contraction viz. an activity decrease of the reactants producing the dilation.

Keywords

Chemical Energy Mechanical Energy Polyacrylic Acid Curve Part Stretch Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuhn, W., O. Künzle and A. Katchalsky: Bull. Soc. chim. belges 57, 421 (1948).Google Scholar
  2. 2.
    Hermans, J. J., and J. Th. G. Overbeek: Bull. Soc. chim. belges 57, 154 (1948); Rec. Trav. chim. Pays-Bas 67, 761 (1948).Google Scholar
  3. 3.
    Katchalsky, A., O. Künzle and W. Kuhn: J. Polymer Sci. 5, 283 (1950).Google Scholar
  4. 4.
    Künzle, O.: Rec. Trav. chim. Pays-Bas 68, 699 (1949).Google Scholar
  5. 5.
    Kuhn, W., B. Hargitay, A. Katchalsky and H. Eisenberg: Nature (Lond.) 165, 515 (1950).Google Scholar
  6. 6.
    Kuhn, W.: Experientia (Basel) 5, 318 (1949); A. Katchalsky: Experientia (Basel) 5, 319 (1949); J. W. Breitenbach u. H. Karlinger: Mh. Chem. 80, 311 (1949).Google Scholar
  7. 7.
    There are other systems of this kind in the literature, e.g.: A. Katchalsky and H. Eisenberg: Nature (Lond.) 166, 269 (1950); R. M. Fuoss and D. Edelson: J. Polymer Sci. 6, 523 (1951); F. G. E. Pautard and P. T. Speakman: Nature (Lond.) 185, 176 (1960).Google Scholar
  8. 8.
    Kuhn, W., and B. Hargitay: Experientia (Basel) 7, 1 (1951).Google Scholar
  9. 9.
    -- Z. Electrochem. angew. physik. Chem. 55, 490 (1951). Lecture by W. Kuhn, 50th Ann. Meeting of Bunsen Society, Göttingen, 4 May 1951.Google Scholar
  10. 10.
    - Z. angew. Physik 4, 108 (1952).Google Scholar
  11. 11.
    The recognition of the importance of the Donnan-osmotic force for this mechano-chemical system (i.e., the pH-muscle) was first described and formulated quantitatively as cited in reference 9. Later it was rediscussed by A. Katchalsky [A. Katchalsky, S. Lifson and H. Eisenberg: J. Polymer Sci. 7, 571 (1951)]. For further discussions and development of this theory, see: P. J. Flory: J. Chem. Physics 21, 162 (1953); T. L. Hill: Farad. Soc. Disc. no. 13 (1953), and Physiol. Rev. 35, 475 (1955); S. Asakura, N. Imai and F. Oosawa: J. Polymer Sci. 13, 499 (1954). See, also: S. A. Rice: Rev. Mod. Physics 31, 69 (1959).Google Scholar
  12. 12.
    Kuhn, W.: Kolloid Z. 76, 258 (1936); W. Kuhn, R. Pasternak and H. Kuhn: Helv. chim. Acta 30, 1705 (1947),-(the latter paper also contains a thermodynamical and statistical study of filament-like molecules between two fixed plates). The treatment cited in these references was adopted and carried on by many authors, especially: L. R. G. Treloar: Trans. Faraday Soc. 40, 59 (1941); 39,36, 241 (1943); H. M. James and E. Guth: Ind. Engng. Chem. 33,624 (1941); H. M. James and E. Guth: J. Chem. Physics 11, 455 (1943); 15, 669 (1947); F. T. Wall: J. Chem. Physics 10, 485 (1942); 11, 527 (1943); P. J. Flory and J. Rehner: J. Chem. Physics 11, 512 (1943); G. Gee: Trans. Faraday Soc. 42, 585 (1946); H. M. James and E. Guth: J. Polymer Sci. 4, 153 (1949).CrossRefGoogle Scholar
  13. 13.
    Kuhn, W., and F. Grün: Kolloid-Z. 101, 248 (1942).CrossRefGoogle Scholar
  14. 14.
    The kinetic origin of the contractile force in the organism was first recognized by E. Wöhlisch Subsequently, the importance of the form of the molecule was emphasized in particular by K. H. Meyer. See: E. Wöhlisch, Verh. phys.-med. Ges. Würzb. N. F. 51, 53 (1926); K. H. Meyer: Biochem. Z. 208, 23 (1929); K. H. Meyer, G. v. Susich and E. Valko: Kolloid-Z. 59, 208 (1932); K. H. Meyer and C. Ferri: Helv. chim. Acta 18, 570 (1935), and many others. Later numerous authors discussed the theory in a more direct relationship to definite muscle model systems, e.g.: J. Botts and M. Morales: Tr. Faraday Soc. 49, 1 (1953); M. Morales, J. Botts and J. Blum and T. L. Hill: Physiol. Rev. 35, 475 (1955); A. Katchalsky: Progr. Biophys. Chem. 4, 19 (1954).Google Scholar
  15. 15.
    Reference to discussion section. J. P. Flory: J. cell. comparat. Physiol. Suppl. 49, 194 (1957).Google Scholar
  16. 16.
    Ramel, A.: Ph. D. Dissertation 1, 1–55 (1957), University of Basel Publication, Basel, Switzerland.Google Scholar
  17. 17.
    Kuhn, W.: Angew. Chem. 70, 58 (1958).Google Scholar
  18. 18.
    -, A. Ramel and D. H. Walters: Chimia (Zürich) 12, 123 (1958).Google Scholar
  19. 19.
    --- Angew. Chem. 70, 314 (1958).Google Scholar
  20. 20.
    Thürkauf, M.: Unpublished Data (1957).Google Scholar
  21. 21a.
    Kuhn, W., and B. Hargitay: Unpublished Data, 1952.Google Scholar
  22. 21.
    -and A. Ramel: Unpublished Data (1955).Google Scholar
  23. 22.
    Flory, P. J., and J. Rehner: J. Chem. Physics 11, 521 (1943); 12, 412 (1944).Google Scholar
  24. 23.
    Hill, T. L.: Faraday Soc. Disc. 13, 132 (1953).Google Scholar
  25. 24.
    Donnan, F. G.: Rep. Physiol. Soc. (Lond.) Dec. 1910; Z. Elektrochem. 17, 572 (1911); Chem. Rev. 1, 73 (1925); F. G. Donnan and A. B. Harris: J. chem. Soc. 99, 1575 (1911).Google Scholar
  26. 25.
    Katchalsky, A., and I. Michaeli: J. Polymer Sci. 15, 69 (1955); I. Michaeli and A. Katchalsky: J. Polymer Sci. 23, 683 (1957).Google Scholar
  27. 26.
    Kuhn, W., A. Ramel and D. H. Walters: Symposium 9th Int. Congress of Biochemistry, Vienna, Sept. 1958 (Pergamon Press, London); also, abstract in Rev. gén. Caoutchouc 35, 883 (1958).Google Scholar
  28. 27.
    - Nature (Lond.) 182, 762 (1958), (abstract of a lecture at University College, London, 14th April 1958, Symposium on Size and Shape Changes of Polyelectrolytes: Conversion of Chemical Energy into Mechanical Energy); also, see: earlier theoretical discussion in S.-B. Heidelberger Akad. Wiss. math.-nat. Kl. 8th February 1958; „Kunststoffe — Plastics“ [Int. Z. ges. Kunststoffgeb. 5, 347 (1958)].Google Scholar
  29. 28.
    Loeb, J.: Pflügers Arch. ges. Physiol. 62, 249 (1895); Arch. Entw.-Mech. 8, 689 (1899); Biochem. Z. 1, 183 (1906); Biochem. Z. 2, 34 (1907); Biochem. Z. 11, 144 (1908); Biochem. Z. 26, 279, 289 (1910); Die Eiwei\körper. Berlin: Springer 1924; J. gen. Physiol. 3, 54 (1921).Google Scholar
  30. 29.
    Proctor, H. R.: Kolloidchem. Beih. 2, 242 (1911); H. R. Proctor and J. R. Wilson: J. chem. Soc. 109, 307 (1916).Google Scholar
  31. 30.
    Pauli, W.: Pflügers Arch. ges. Physiol. 71, 336 (1898); W. Pauli and P. Rona, Hofmeisters Beitr. 2, 25 (1902); P. Hofmeister: Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 24, 424 (1888).Google Scholar
  32. 31.
    Kuhn, W., G. Ebner, H. J. Kuhn and D. H. Walters: Helv. chim. Acta 43, 502 (1960). Description of a contractile redox system consisting of pure polyvinylalkohol in presence of 2-methylnaphtochinone see some authors, Experientia (Basel) 16, 106 (1960). For the generalization of the treatment given in the case of the pH-muscle to the production of mechanical energy from any kind of chemical energy see W. Kuhn, Lecture at High Polymer Symposium at Wiesbaden Oct. 12. 1959; Makromolekulare Chemie 35 2. Sonderband, 200–221 (1960), and lecture at a meeting at Basel, Nov. 21. 1959 of the Schweizerischer Verein f. Physiologie, physiolog. Chemie und Pharmakologie und d. Schweiz. Gesellschaft f. Biochemie.Google Scholar
  33. 32.
    E.g., A. F. Huxley and R. E. Taylor: Nature (Lond.) 176, 1068 (1955), with reference to the Z-membrane as a possible pathway for depolarization into the interior of the muscle fiber.Google Scholar
  34. 33.
    Neurath, H., and K. Bailey: The Proteins (Acad. Press), part B, 2, 951 (1954).Google Scholar
  35. 34.
    Randall, J. T.: J. cellular comparat. Physiol. Suppl. 1, 49, 199 (1957).Google Scholar
  36. 35.
    Jordan, H. E.: Amer. J. Physiol. 13, 302 (1933).Google Scholar
  37. 36.
    Draper, A. H., and A. Hodge: Aust. J. exp. Biol. med. Sci. 27, 465 (1949).Google Scholar
  38. 37.
    Sjöstrand, F. S., and E. Andersson-Cedergren: J.Ultrastruct. Res. 1, 74 (1957).Google Scholar
  39. 38.
    Pautard, F. G. E.: Nature (Lond.) 182, 788 (1958), with reference to the fundamental event in muscular contraction. (See, also, the many theories on muscle structure and function which are in the literature: e.g., review article of S. V. Perry: Physiol. Rev. 36, 2 (1956); H. E. Huxley: Nature (Lond.) 182, 762 (1958), from the same symposium of reference 27; M. F. Morales: Rev. Mod. Physics 31, 426 (1959).Google Scholar
  40. 39.
    Buchthal, F.: Personal Communications (letters). 12 December 1957, and 16 July 1958.Google Scholar
  41. 40.
    Rosenfalck, P.: Discussion Section of Symposium 9th Int. Congress of Biochemistry, Vienna, Sept. 1958, for paper of reference 26, (Pergamon Press: London 1959).Google Scholar
  42. 40a.
    The observation of an about 40% loss of fluid by the myofibrils when contracting was confirmed by F. Buchthal by several independent methods [Communication of F. Buchthal during Symposium on Contractility at Pittsburgh (PA), Jan. 27.–30. 1960].Google Scholar
  43. 41.
    E.g., E. Bolzer: J. gen. Physiol. 43, 393 (1952b).Google Scholar
  44. 42.
    Szent-Györgyi, A.: Enzymologia 9, 98 (1940–1941).Google Scholar
  45. 43.
    Caldwell, P. D.: J. Physiol. (Lond.) 142, 22 (1958).Google Scholar
  46. 44.
    Hill, A. V.: Proc. roy. Soc. B 135, 446 (1948); 136, 399 (1949).Google Scholar
  47. 45.
    Andersson-Cedergren, E.: J. Ultrastruct. Res. Suppl. 1, 1, 191 (1959); H. Stanley Bennett: Rev. mod. Physics 31, 394 (1959), and related references.Google Scholar
  48. 46.
    A publication originating from both the Biology Department of Smith College, Northhampton, and The Institute for Muscle Research, Wood's Hole, Massachusetts. (By reference.)Google Scholar
  49. 47.
    Buchthal, F., quoted by M. F. Morales: Rev. mod. Physics 31, 426 (1959).Google Scholar
  50. 48.
    Flory, P. J.: Science 124, 53 (1956), and related papers.Google Scholar
  51. 49.
    Hall, C. E., M. A. Jakus and F. O. Schmitt: J. Amer. chem. Soc. 64, 1234 (1942); F. O. Schmitt, C. E. Hall and M. A. Jakus: J. cell. comp. Physiol. 220, 11 (1942); C. Wolpers: Klin. Wschr. 22, 624 (1943); R. S. Bear: J. Amer. chem. Soc. 64, 727 (1942); O. Kratky and A. Secora: J. makromolekulare Chem. 1, 113 (1943); K. Hesse: 4th Int. Congr. Biochem. Vienna 1958, Symposium 9, number 8; and related literature.CrossRefGoogle Scholar
  52. 50.
    Kuhn, W., H. Majer and F. Burkhardt: Z. Elektrochem. 63, 70 (1959).Google Scholar
  53. 51.
    Brink, F.: Pharm. Rev. 6, 243 (1954), a review article particularly in reference to neural processes et al.; A. L. Hodgkin and R. D. Keynes: J. Physiol. (Lond.) 138, 282 (1957); R. Niedergerke: J. Physiol. (Lond.) 138, 506 (1957); B. Frankenhaeuser and A. L. Hodgkin: J. Physiol. (Lond.) 137, 218 (1957); B. Frankenhaeuser: J. Physiol. (Lond.) 137, 245 (1957); R. Niedergerke: Experientia (Basel) 15, 128 (1959); and wider literature.Google Scholar
  54. 52.
    Loeb, J.: Pflügers Arch. ges. Physiol. 88, 68 (1901), and subsequent papers. See, also: reference 28.Google Scholar
  55. 53.
    Mongar, J. L., and A. Wassermann: Nature (Lond.) 159, 746 (1947); R. E. Cooper and A. Wassermann: Nature (Lond.) 180, 1072 (1957), and both subsequent and related papers; R. E. Cooper and A. Wassermann: Nature (Lond.) 182, 762 (1958); etc.Google Scholar
  56. 54.
    Wall, F. T., and J. W. Drenan: J. Polymer Sci. 7, 83 (1951); H. Mark, H. Morawetz and A. M. Kotliar: J. Phys. Chem. 58, 619 (1954); F. T. Wall and S. J. Gill: J. Phys. Chem. 58, 1128 (1954); H. Thiele and E. Schacht: Kolloid-Z. 156, 14 (1958); 161, 120 (1958); 163, 2 (1959); and wider literature.Google Scholar
  57. 55.
    Hoffmann-Berling, H.: Biochem. biophys. Acta 27, 247 (1958). Also, personal communication with J. C. Rüegg (Zürich), November 1959.CrossRefGoogle Scholar
  58. 56.
    Kuhn, W., D. H. Walters, H. J. Kuhn and G. Ebner: Z. Elektrochem. angew. physik. Chem. 64 (1960); W. Kuhn, lecture at a meeting at Basel Nov. 21. 1959 for Schweiz. Gesellschaft f. Biochemie (see ref. No. 31) and Preprint of Conference on contractility. Pittsburgh 27.–30. Jan. 1960. p. 14.Google Scholar
  59. 56a.
    For further attempts to a general thermodynamic analysis of teinochemical systems see A. Katchalsky, Preprints of Conference on Contractility Pittsburgh 27–30. Jan. 1960, p. 22; W. Prins and J. J. Hermans, ibid. p. 25, 26.Google Scholar
  60. 57.
    Other important studies on synthetic polymer fibers in reference to mechano-chemical systems. S. Basu and P. R. Chandhurry: J. coll. Sci. 12, 19 (1957); H. Yuki, Sh. Sakakibara, T. Taki and W. Tani: Bull. chem. Soc. Japan 29, 664 (1956).CrossRefGoogle Scholar
  61. 58.
    Other theoretical models, and working models, for mechano-chemical processes in references to the biological problem of contractility. M. F. Morales and J. Botts: Arch. Biochem. Biophys. 37, 283 (1952); M. J. Polissar: Amer. J. Physiol. 168, 766, 782, 793, 805 (1952); M. J. Pryor: Progr. Biophys. biophys. Chem. 1, 216 (1950); D. D. Wilkie: Progr. Biophys. biophys. Chem. 1, 288 (1954); I. M. Klotz and M. G. Horowitz: Science 126, 3262 (1957); A. F. Huxley: Progr. Biophys. biophys. Chem. 7, 255 (1957). See, also: the bibliographies of these respective papers.CrossRefGoogle Scholar
  62. 59.
    A consideration of muscle contraction as an irreversible process. T. L. Hill: Proc. roy. Soc. B 139, 464 (1952); and related references.Google Scholar
  63. 60.
    Heilbrunn, L. V., and F. J. Wiercinski: J. cell. comp. Physiol. 29, 15 (1947); E. Bolzer: Amer. J. Physiol. 168, 760 (1952); I. R. Bendall: J. Physiol. 121, 232 (1953); S. Watanabe: Arch. Biochem. Biophys. 54; 559 (1954); E. Bolzer: J. gen. Physiol. 38, 53 (1954); R. Niedergerke: J. Physiol. 128, 12 (1955); E. Bolzer: Arch. Biochem. Biophys. 73, 144 (1958); and related references.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1960

Authors and Affiliations

  • W. Kuhn
    • 1
  • A. Ramel
    • 1
  • D. H. Walters
    • 1
  • G. Ebner
    • 1
  • H. J. Kuhn
    • 1
  1. 1.Institute of Physical ChemistryUniversity of BasleSwitzerland

Personalised recommendations