The chemistry of coordinate polymerization of dienes

  • Max Roha
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 1/4)


This review has brought together the diverse ionic initiators for dienes into a consistent series of four polymerization mechanisms. The ionic freedom characteristic of the electrophilic and free anionic initiators catalyze the rapid formation of 1–4 trans structures. Coordinate initiation produces 1–4 cis structures via a cyclic transition state while anionic initiation produces 1–2 (3–4) structures.

The catalytic activity in the coordinate and anionic catalysts depends largely on complex formation. The equilibrium characteristics of complex formation produces the different rate, structure and molecular weight effects observed in coordinate initiation studies.


Coordinate Polymerization Titanium Tetrachloride Alkyl Sodium Trans Structure Cyclic Transition State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anon: First synthesis of natural rubber molecule. Chem. Eng. News 32, 4913 (1954).Google Scholar
  2. 2.
    Anon: “How cis-isoprene polymerizes.” Chem. Eng. News 36, No. 38, 52 (1958).Google Scholar
  3. 3.
    Breslow, D. S., and N. R. Newburg: Bis-(cyclopentadienyl)-titanium dichloride-alkyl aluminum complexes as catalysts for the polymerization of ethylene. J. Amer. chem. Soc. 79, 5072–5073 (1957).Google Scholar
  4. 3a.
    -- Bis-(cyclopentadienyl)-titanium dichloride-alkyl aluminum complexes as soluble catalysts for the polymerization of ethylene. J. Amer. chem. Soc. 81, 81–86 (1959).Google Scholar
  5. 4.
    Brown, J. F., Jr., and D. M. White: Stereospecific polymerization in canal complexes. Abstracts, 133rd Meeting American chemical Society, San Francisco, California, April 13–18, 1958, p. 14 R.Google Scholar
  6. 5.
    Brown, T. L., and M. T. Rogers: The preparation and properties of crystalline lithium alkyls. J. Amer. chem. Soc. 79, 1859–1861 (1957).Google Scholar
  7. 6.
    Carter, W. C., R. L. Scott and M. Magat: The viscosity-molecular weight relation for natural rubber. J. Amer. chem. Soc. 68, 1480–1483 (1940).Google Scholar
  8. 7.
    Chien, James C. W.: Kinetics of ethylene polymerization catalyzed by bis-(cyclopentadienyl)-titanium dichloride dimethylaluminum chloride. J. Amer. chem. Soc. 81, 86–92 (1959).CrossRefGoogle Scholar
  9. 8.
    D'Alelio, G. F., and T. J. Miranda: Stereospecific polymerization. Chem. and Ind. 1959, 163–164.Google Scholar
  10. 9.
    D'Ianni, J. D., F. J. Naples, J. W. March and J. L. Zarney: Chemical derivatives of synthetic isoprene rubbers. Ind. Eng. Chem. 38, 1171–1181 (1946).CrossRefGoogle Scholar
  11. 10.
    Diem, H. E., Harold Tucker and C. F. Gibbs: Alkyllithium polymerization of isoprene. Abstracts 133 rd Meeting of the American Chemical Society, New York, New York. September 8–13, 1957, p. 9u.Google Scholar
  12. 11.
    Doering, W. von E., and T. C. Aschner: Mechanism of the alkoxide-catalyzed carbinol-carbonyl equilibrium. J. Amer. chem. Soc. 75, 393–397 (1953).Google Scholar
  13. 12.
    -and R. W. Young: Partially assymetric Meerwein-Ponndorf-Verley reductions. J. Amer. chem. Soc. 72, 631 (1950).Google Scholar
  14. 13.
    Eirich, F., and H. Mark: Synthesis of vinyl polymers with coordination catalysts. Kinststoffe-Plastics 3, 136–146 (1956).Google Scholar
  15. 14.
    Friedlander, H. N., and K. Oita: Organometallics in ethylene polymerization. Ind. Eng. Chem. 49, 1885–1890 (1957).Google Scholar
  16. 15.
    Furukawa, J., T. Tsuruta and T. Fueno: Diethylcadium as an initiator for vinyl polymerization. J. Polymer Sci. 28, 234–235 (1958).Google Scholar
  17. 15a.
    --T. Saigusa, A. Onisbi, A. Kawasaki and T. Fueno: New catalyst for stereospecific polymerization of diolefins. J. Polymer Sci. 450–451 (1958).Google Scholar
  18. 16.
    Goodrich-Gulf Chemicals, Inc.: “Perfectionnements apportes a la production de polymers et de copolymeres d'hydrocarbures polyolefines conjugues”. Belgium Patent 543,292.Google Scholar
  19. 17.
    Groenewege, M. P.: An I. R. spectroscopic study of the components of the Ziegler catalyst system TiCl4+ Al(CH3)2Cl. Z. phys. Chem. 18, 147–162 (1958).Google Scholar
  20. 18.
    Groizeleau, L.: Emploi du bromure d'ethyl-aluminum comme catalyseur dans la reaction de Freidel et Crafts. C. R. Acad. Sci. (Paris) 244, 1223–1225 (1957).Google Scholar
  21. 19.
    Hallam, B. F., and P. L. Pauson: Metal derivatives of conjugated dienes, Part I. J. chem. Soc. 1958, 642–645.Google Scholar
  22. 20.
    Hambling, J. K., T. P. Rudy and N. C. Yang: Role of Lewis acid in the polymerization of ethylene by titanium salt complexes. Abstracts 135th Meeting, American Chemical Society, Boston, Massachusetts, April 5–10, 1959, pg. 16 S.Google Scholar
  23. 21.
    Hsieh, H., D. J. Kelley and A. V. Tobolsky: Polymerization of isoprene with lithium dispersions and lithium alkyls using tetrahydrofuran as solvent. J. Polymer Sci. 26, 240–242 (1957).Google Scholar
  24. 22.
    -and A. V. Tobolsky: Polymerization of isoprene by n-butyl lithium. J. Polymer Sci. 25, 245–247 (1951).Google Scholar
  25. 23.
    Jonassen, H. B., R. I. Stearns, Jonko Kenttamaa, Donald W. Moore and A. Greenville Whittaker: The complex formed from cobalt hydrocarbonyl and butadiene. J. Amer. chem. Soc. 80, 2586–2587 (1958).Google Scholar
  26. 24.
    Kambara, S., N. Yamazaki and T. Suminoe: Cis 1–4 polymerization of isoprene by means of Ziegler's type catalyst and effects of polymerization conditions on its reaction. J. chem. Soc. Japan Ind. Eng. Chem. 62, 299 (1959).Google Scholar
  27. 25.
    Krapachev, V. A., B. A. Dolgoplosk and N. I. Nikolaev: Complex formation and chain structure in the polymerization of divinyl with butyllithium. Dokl. Akad. Nauk SSSR 111, 759–761 (1957).Google Scholar
  28. 26.
    Mandell, L.: Addition of isopentenyl magnesium chloride to cyclohexanone. J. org. Chem. 22, 150–157 (1957).CrossRefGoogle Scholar
  29. 27.
    Mark, H.: Chem. and Ind. 1957, 205.Google Scholar
  30. 28.
    Meerwein, H., G. Hinz, H. Majert and H. Sonke: über die reduzierende Wirkung der Metallalkyle, insbesondere der Aluminium-und Bor-alkyle. J. prakt. Chem. (2) 147, 226–250 (1937).CrossRefGoogle Scholar
  31. 29.
    Mihail, R.: TiCl3 als Isomerisierungskatalysator. Angew. Chem. 70, 343 (1958).Google Scholar
  32. 30.
    Morton, A. A.: Alfin catalysts and the polymerization of butadiene. Ind. and Eng. Chem. 42, 1488–1496 (1950).Google Scholar
  33. 31.
    -, F. H. Bolton, F. W. Collins and E. F. Cluff: Effect of associated salts on the polymerization of butadiene by organosodium reagents. Ind. Eng. Chem. 44, 2876–2882 (1952).Google Scholar
  34. 32.
    -and A. E. Brachman: The effects of salts and other substances on the alkylation of toluene, a modified Wurtz reaction. J. Amer. chem. Soc. 73, 4363–4367 (1951).Google Scholar
  35. 33.
    -and C. E. Claff jr.: The dimetalation of benzene, thiophene, p-t-butyl phenol, isopropylbenzene and sec-butylbenzene and the effect of Alkoxides on the Meta-Para ratio for benzene. J. Amer. chem. Soc. 76, 4935–4938 (1954).Google Scholar
  36. 34.
    -and H. C. Wohlers: The reaction of organo sodium reagents with styrene and 1, 1-diphenyl ethylene. J. Amer. chem. Soc. 64, 167–172 (1947).Google Scholar
  37. 35.
    Natta, G.: Polymeres isotactiques. Makromol. Chem. 16, 213–237 (1955).Google Scholar
  38. 35a.
    - Isotactical polymers. Chemica e Industria 37, 888–900 (1955).Google Scholar
  39. 36.
    - Stereospezifische Katalysen und Isotaktische Polymere. Angew. Chem. 68, 393–403 (1956).Google Scholar
  40. 37.
    -, U. Giannini, G. Mazzanti and P. Pino: Kristallisierbare Organo-metall-komplexe, die Titan und Aluminium enthalten. Angew. Chem. 69, 686 (1957).Google Scholar
  41. 37a.
    ----and P. Pino: A crystallizable organometallic complex containing titanium and aluminum. J. Amer. chem. Soc. 79, 2975–2976 (1957).Google Scholar
  42. 37b.
    -, P. Corradini and I. W. Bassi: Crystal structure of the complex (C5H5)2 TiCl2Al(C2H5)2. J. Amer. chem. Soc. 80, 755–756 (1958).CrossRefGoogle Scholar
  43. 38.
    -, P. Pino, G. Mazzanti, U. Giannini, E. Mantica and M. Peraldo: The nature of some soluble catalysts for low pressure ethylene polymerization. J. Polymer Sci. 26, 120–123 (1957).Google Scholar
  44. 39.
    -, L. Porri, P. Corradini and D. Macero: Chem. e Ind. (Milan) 40, 362–371 (1958); C. A. 53, 195 (1959).Google Scholar
  45. 40.
    Patat, F., and Hj. Sinn: Zour ablauf der Niederdruckpolymerisation der α-olefine, I. Angew. Chem. 70, 496–500 (1958).Google Scholar
  46. 41.
    Phillips Petroleum Company, Inc.: “Process and new catalyst for the polymerization of conjugated dienes and the polymers obtained thereby”. Belgium Patent 551,851.Google Scholar
  47. 42.
    Richardson, W. S.: The microstructure of diene polymers. III. Polyisoprenes and polybutadienes prepared with cationic catalysts. J. Polymer Sci. 13, 325–328 (1954).Google Scholar
  48. 43.
    -and A. Sacher: Infrared examination of various polyisoprenes. J. Polymer Sci. 10, 353–370 (1953).Google Scholar
  49. 44.
    Roha, Max: “Stereospecific polymerization of dienes”. Lecture at Polytechnic Institute of Brooklyn. Brooklyn, New York, June 11, 1957.Google Scholar
  50. 45.
    -, L. C. Kreider, M. R. Frederick and W. L. Beears: Low pressure polyethylene catalysts. Abstracts 135th Meeting, American Chemical Society, Boston, Massachusetts, April 5–10, 1959, p. 7 P.Google Scholar
  51. 46.
    Saltman, W. M., W. E. Gibbs and J. Lal: Mechanism studies of isoprene polymerization with the aluminum triisobutyl-titanium tetrachloride catalyst. J. Amer. chem. Soc. 80, 5615–5622 (1958).CrossRefGoogle Scholar
  52. 47.
    Sinn, Hj., C. Lundborg and K. Kirchner: Komplexpolymerisiertes Isopren und Styrol. Angew. Chem. 70, 744 (1958).Google Scholar
  53. 48.
    Stavely, F. W., and Co-workers: Coral rubber — A Cis-1,4-Polyisoprene. Ind. Eng. Chem. 48, 778–783 (1956).CrossRefGoogle Scholar
  54. 49.
    Stearns, R. S., and L. E. Forman: Stereospecific polymerization of isoprene with lithium and organolithium compounds. Abstracts 134th Meeting of American Chemical Society, Chicago, Illinois, September 7–12, 1958, p. 12 U.Google Scholar
  55. 50.
    Stroh, R., J. Ebersberger, H. Haberland and W. Hahn: Alkylierung Aromatische Amine. Angew. Chem. 69, 124–131 (1957).Google Scholar
  56. 51.
    Szwarc, M., M. Levy and R. Milkovich: Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers. J. Amer. chem. Soc. 78, 2656–2657 (1956).Google Scholar
  57. 52.
    Tobolsky, A. V.: Revolution in polymer chemistry. Amer. Scientist 45, No. 1, 34–43 (1957).Google Scholar
  58. 53.
    -, D. J. Kelley, K. F. O'Driscoll and C. E. Rodgers: Directed Anionic polymerization. J. Polymer Sci. 28, 425–426 (1958).Google Scholar
  59. 54.
    Uelzmann, H.: A theoretical study on the mechanism of Ziegler-Type polymerizations. J. Polymer Sci. 32, 457–476 (1958).Google Scholar
  60. 55.
    Ullmann Encyclopedia. Vol. 9, p. 324, 4 th Ed.Google Scholar
  61. 56.
    Waack, R., A. Rembaum, J. D. Coombes and M. Szwarc: Molecular weights of “Living” polymers. J. Amer. chem. Soc. 79, 2026–2027 (1957).CrossRefGoogle Scholar
  62. 57.
    Welch, F. J.: Kinetics of the butyllithium-initiated polymerization of styrene. Abstract 133rd Meeting of the American Chemical Society, San Francisco, California, April 13–18, 1958, p. 3R.Google Scholar
  63. 58.
    Wittig, G.: Komplexbildung und ReaktivitÄt in der Metallorganischen Chemie. Angew. Chem. 70, 65–71 (1958).Google Scholar
  64. 59.
    Yamazaki, Noboru and Kambara, Shu: Through private communication.Google Scholar
  65. 60.
    Ziegler, K., F. Dersch and H. Wollthan: Untersuchungen über alkaliorganische Verbindungen XI. Liebigs Ann. Chem. 511, 1344 (1934).Google Scholar
  66. 60a.
    -and L. Jakob: Untersuchungen über alkaliorganische Verbindungen XII. Liebigs Ann. Chem. 511, 45–63 (1934).Google Scholar
  67. 60b.
    --, H. Wollthan and A. Wenz: Untersuchungen über alkaliorganische Verbindungen XIII. Liebigs Ann. Chem. 511, 64–88 (1934).Google Scholar
  68. 60c.
    -, H. Grimm and R. Willer: Untersuchungen über alkaliorganische Verbindungen XV. Liebigs Ann. Chem. 542, 90–122 (1939).Google Scholar

Copyright information

© Springer-Verlag 1960

Authors and Affiliations

  • Max Roha
    • 1
  1. 1.B. F. Goodrich Research Center BrecksvilleOhioUSA

Personalised recommendations