Transition vitreuse dans les polymères amorphes. Etude phénoménologique

  • A. J. Kovacs
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 3/3)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam, G.: Molekularkinetische Theorie der Volumen-Relaxation amorpher Hochpolymeren. Kolloid-Z. 180, 11–26 (1962).Google Scholar
  2. 2.
    Alfrey, T., G. Goldfinger and H. Mark: The apparent second-order transition point of polystyrene. J. Appl. Phys. 14, 700–704 (1943).CrossRefGoogle Scholar
  3. 3.
    Allen, G., D. Sims and G. J. Wilson: Intermolecular forces and chain-flexibilities in polymers. III. Internal pressures of polymers below their glass transition temperatures. Polymer 2, 375–382 (1961).Google Scholar
  4. 4.
    Andrade, E. N. Da. C.: The viscosity of liquids. Nature 125, 309 et 582 (1930). Voir aussi: J. de Guzman, Anales soc. esp. fis. quim. 11, 353 (1913).Google Scholar
  5. 5.
    Attarian, V., H. Szwarc et L. Terminassian: Phénomènes cinétiques distribués en énergies d'activation. J. chim. phys. 58, 837–844 (1961).Google Scholar
  6. 6.
    Barlow, A., and J. Lamb: The viscoelastic behavior of lubricating oils under cyclic shearing stress. Proc. Roy. Soc. (London) 253 A, 52–69 (1959).Google Scholar
  7. 7.
    Beevers, R. B., and E. F. T. White: Physical properties of vinyl polymers. Part 1. Dependence of the glass transition temperature of polymethylmetacrylate on molecular weight. Trans. Faraday Soc. 56, 744–752 (1960).Google Scholar
  8. 8.
    Bekkedahl, N., and R. B. Scott: Specific heat of the synthetic rubber Hycar O. R. from 15‡ to 340‡ K. J. Research Nat. Bur. Standards 29, 87–95 (1942). Res. Paper RP 1487.Google Scholar
  9. 9.
    Berger, E.: Contribution to the theory of glass formation, and the glassy state. J. Am. Ceram. Soc. 15, 647–677 (1932).Google Scholar
  10. 10.
    Bernal, J. D.: A geometrical approach to the structure of liquids. Nature 183, 141–147 (1959).Google Scholar
  11. 11.
    Bkstul, A. B.: Application of the Williams-Landel-Ferry equation to silicate glasses. Glastechn. Ber. 32 K, VI/59–VI/66 (1959).Google Scholar
  12. 12.
    -, and A. J. Kovacs: Isothermal volume changes in amorphous selenium (to be submitted).Google Scholar
  13. 13.
    Bondi, A.: Viscosity and molecular structure. Ann. N. Y. Acad. Sci. II 53, 805–823 (1951).Google Scholar
  14. 14.
    - Theories of viscosity p. 321–350 dans “'Rheology”, Edité par F. R. Eirich, Vol. I. New-York: Academic Press 1956.Google Scholar
  15. 15.
    Borelius, G., and K. A. Paulson: Volume, internal energy and entropy of amorphous and crystalline selenium. Ark. Mat. Astro. Fys. 33 A, (n‡ 7), 1–16 (1946).Google Scholar
  16. 16.
    Bovey, F. A., and G. V. D. Tiers: Polymer NMS spectroscopy. II. The high resolution spectra of methyl-methacrylate polymers prepared with free radical and anionic initiators. J. Polymer Sci. 44, 173–182 (1960).Google Scholar
  17. 17.
    -- The high resolution nuclear magnetic resonance spectroscopy of polymers. Fortschr. Hochpol-Forsch. 3, 139–195 (1963).Google Scholar
  18. 18.
    Boyer, R. F., and R. S. Spencer: Thermal expension and second-order transition effects in high polymers. Part I. Experimental results. J. Appl. Phys. 15, 398–405 (1944).CrossRefGoogle Scholar
  19. 19.
    -- Thermal expansion and second-order transition effects in high-polymers. Part III. Time effects. J. Appl. Phys. 17, 398–404 (1946).Google Scholar
  20. 20.
    -- Transition de second ordre dans les hauts polymères, p. 385–435, dans «Changements de phases», Edité par la Société de Chimie Physique, Paris (1952).Google Scholar
  21. 21.
    Braun, G., and A. J. Kovacs: Glass transition in powdered polystyrene. Phys. Chem. Glasses. 4, 152–160 (1963).Google Scholar
  22. 22.
    BridgmaN, P. W.: The physics of high pressure. New-York: Macmillan 1931.Google Scholar
  23. 23.
    Bueche, F.: Derivation of the WLF equation for the mobility of molecules in molten glasses. J. Chem. Phys. 24, 418–420 (1956).Google Scholar
  24. 24.
    - Rate and pressure effects in polymers and other glass forming substances. J. Chem. Phys. 36, 2940–2946 (1962).CrossRefGoogle Scholar
  25. 25.
    Cohen, M. H., and D. Turnbull: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169 (1959).CrossRefGoogle Scholar
  26. 26.
    Collyer, P. W.: Study of time and temperature effects on glass in the annealing range. J. Am. Ceram. Soc. 30, 338–344 (1947).Google Scholar
  27. 27.
    Condon, E. U.: Comments on the annealing of flat glass. Glass Ind. 33, p. 307 et 322–323 (1952).Google Scholar
  28. 28.
    - Physics of the glassy state. II. The tranformation range. Am. J. Phys. 22, 132–142 (1954).Google Scholar
  29. 29.
    Danusso, F., G. Moraglio, W. Ghiglia, L. Motta e G. Talamini: Proprièta volumetriche e dilatometriche di alcuni polimeri di olefine. Chirn. e ind. 41, 748–758 (1959).Google Scholar
  30. 30.
    Daragan, B.: Considérations sur la recuisson du verre plat. Verres et réfractaires 5, 135–143 (1951); voir aussi: Glass Ind. 33, 69–74 et 98–99 (1952).Google Scholar
  31. 31.
    Davidson, D., and R. Cole: Dielectric relaxation in glycerol, propylene glycol and n-propanol. J. Chem. Phys. 19, 1484–1490 (1951).Google Scholar
  32. 32.
    Davies, R. O., and G. O. Jones: The irreversible approach to equilibrium in glasses. Proc. Roy. Soc. 217 A, 26–42 (1953a).Google Scholar
  33. 33.
    -- Thermodynamic and kinetic properties of glasses. Advances in Phys. (Phil. Mag. Suppl.) 2, 370–410 (1953b).Google Scholar
  34. 34.
    De Bast, J., et P. GiLARd: La fonction de distribution des temps de relaxation appliquée à l'étude du comportement des verres sous contrainte. Silicates inds. 27, 531–535 (1962).Google Scholar
  35. 35.
    De Bast, J., et P. Gilard: Variation of the viscosity of glass and the relaxation of stresses during stabilisation. Phys. Chem. Glasses 4, 117–128 (1963).Google Scholar
  36. 36.
    De Donder, Th.: Affinity. Stanford University Press, 1936; Paris: Dunod 1936.Google Scholar
  37. 37.
    De Vries, A. J., and J. Tochon: Non-linear viscoelastic behavior of polymer melts. J. Appl. Polymer Sci. 7, 315–331 (1963).Google Scholar
  38. 38.
    Dienes, G. J.: Activation energy for viscous flow and short-range order. J. Appl. Phys. 24, 779–782 (1953).Google Scholar
  39. 39.
    DiMarzio, E. A., and J. H. Gibbs: Molecular interpretation of glass temperature depression by plasticizers. J. Polymer Sci. A 1, 1417–1428 (1963).Google Scholar
  40. 40.
    Doolittle, A. K.: Studies in newtonian flow. II. The dependence of the viscosity of liquids on free-space. J. Appl. Phys. 22, 1471–1475 (1951).Google Scholar
  41. 41.
    Douglas, R. W.: Relations between physical properties and structure of glasses. I. Variation of physical properties with time. Trans. Soc. Glass. Techn. 31, 50–73 (1947).Google Scholar
  42. 42.
    - The flow of glass. Trans. Soc. Glass Techn. 33, 138–162 (1949).Google Scholar
  43. 43.
    - Variation of the physical properties of glass with time in the transformation range. G. E. C. J. 21, 3–12 (1954).Google Scholar
  44. 44.
    Ehrenfest, P.: Phasenumwandlungen im üblichen und erweiterten Sinn, klassifiziert nach den entsprechenden Singularitäten des thermodynamischen Potentials. Leiden Comm. Suppl. 75 b, 8–13 (1933); Proc. Kon. Akad. Amsterdam 36, 153 (1933).Google Scholar
  45. 45.
    Ellerstein, S. M.: A glass temperature relationship. J. Polymer Sci. B 1, 311–312 (1963).Google Scholar
  46. 46.
    Ewell, R. E., and H. Eyring: Theory of the viscosity of liquids as a function of temperature and pressure. J. Chem. Phys. 5, 726–736 (1937).Google Scholar
  47. 47.
    Ferry, J. D., and G. S. Parks: Studies on glass. XIII. Glass formation by a hydrocarbon polymer. J. Chem. Phys. 4, 70–75 (1936).CrossRefGoogle Scholar
  48. 48.
    - Mechanical properties of substances of high molecular weight. VI. Dispersion in concentrated polymer solutions and its dependence on temperature and concentration. J. Am. Chem. Soc. 72, 3746–3752 (1950).CrossRefGoogle Scholar
  49. 49.
    -, E. R. Fitzgerald, L. D. Grandine and M. L. Williams: Temperature dependence of dynamic properties of elastomers; relaxation distributions. Ind. Eng. Chem. 44, 703–706 (1952).CrossRefGoogle Scholar
  50. 50.
    -, and R. S. Stratton: The free volume interpretation of the dependence of viscosities and viscoelastic relaxation times on concentration, pressure and tensil strain. Kolloid-Z. 171, 107–111 (1960).CrossRefGoogle Scholar
  51. 51.
    - Viscoelastic properties of polymers. New-York: Wiley & Sons. 1961.Google Scholar
  52. 52.
    Flory, P. J.: Principles of polymer chemistry. Ithaca, N. Y.: Cornell University Press, 1953.Google Scholar
  53. 53.
    Fox, T. G., and P. J. Flory: Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21, 581–591 (1950); J. Polymer Sci. 14, 315–319 1954).CrossRefGoogle Scholar
  54. 54.
    -, and S. Loshaek: Influence of molecular weight and degree of crosslinking on the specific volume and the glass temperature of polymers. J. Polymer Sci. 40, 371–390 (1955).Google Scholar
  55. 55.
    -, S. Gratch and S. Loshaek: Viscosity relationships for polymers in bulk and concentrated solutions. p. 431–493 dans “Rheology”. Ed. F. R. Eirich, Vol. 1, New-York: Academic Press 1956.Google Scholar
  56. 56.
    -, B. S. Garrett, W. E. Goode, S. Gratch, J. F. Kincaid, A. Spell and J. D. Stroupe: Crystalline polymers of methylmethacrylate. J. Am. Chem. Soc. 80, 1768 (1958).Google Scholar
  57. 57.
    Frenkel, J.: Kinetic theory of liquids. London: Oxford Univ. Press 1946.Google Scholar
  58. 58.
    Fulcher, G. S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 et 789 (1925).Google Scholar
  59. 59.
    Gast, T.: Messungen der spezifischen Wärme verschiedener Kunststoffe in Abhängigkeit von der Temperatur. Kunststoffe 43, 15–18 (1953); cf. S. Alford and M. Dole: J. Am. Chem. Soc. 77, 4774 (1955).Google Scholar
  60. 60.
    Gee, G., P. N. Hartley, J. B. M. Herbert and H. A. Lanceley: The effect of deformation on the transition Rubber-Glass. Polymer. 1, 365–374 (1960).Google Scholar
  61. 61.
    Gehrke, P.: Schmelzen und glasige Erstarrung von Hochpolymeren unter hohen Drücken. Dissertation, Techn. Hochschule, Aachen (1960).Google Scholar
  62. 62.
    Gibbs, J. H., and E. A. Dimarzio: Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373–383, 807–813 (1958).Google Scholar
  63. 63.
    Gibson, G. E., and W. F. Giauque: Third law of thermodynamics. J. Am. Chem. Soc. 45, 93–96 (1923).CrossRefGoogle Scholar
  64. 64.
    Gilard, P., et J. De Bast: Aspects particuliers des phénomènes de fluage et de relaxation dans l'intervalle de transformation. p. 442–457 dans: Advances in glass technology. VI. International Congress on Glass, Washington, D. C. New York: Planum Press 1962.Google Scholar
  65. 65.
    Glasstone, S., K. J. Laidler and H. Eyring: The theory of rate processes, p. 477–516. New York: Mc. Graw-Hill Book Co. Inc. 1941.Google Scholar
  66. 66.
    Goldstein, M.: Phenomenological aspects of the glass transition. Submitted to “Modern Aspects of vitrous State”, Editor J. D. McKenzie. London: Butterworth & Co. Ltd. 1963.Google Scholar
  67. 67.
    -Some thermodynamic aspects of the glass transition: Free volume, entropy and enthalpy theories. J. Chem. Phys. To be published (1964).Google Scholar
  68. 68.
    Gordon, M., and J. S. Taylor: Ideal copolymers and the second-order transition of synthetic rubbers. Part I. Non-crystalline copolymers. J. Appl. Chem. 2, 493–500 (1952).Google Scholar
  69. 69.
    Gotlib, Yu. Ya., and O. B. Ptitsyn: Theory of annealing of glass as a cooperative process. Sov. Phys. Solid State 3, 2456–2459 (1962); orig. russe: 3, 3383–3388 (1961).Google Scholar
  70. 70.
    Griffith, J. H., and B. G. Rånby: Dilatometric measurements on poly (4-methyl-1-pentene), glass and melt transition temperatures, crystallization rates and unusual density behavior. J. Polymer. Sci. 44, 369–381 (1960).Google Scholar
  71. 71.
    Gutman, F., and L. M. Simmons: The temperature dependence of the viscosity of liquids. J. Appl. Phys. 23, 977–978 (1952).Google Scholar
  72. 72.
    Hahn, S. J., T. Ree and H. Eyring: Non-newtonian relaxation in amorphous solids in “Non-Crystalline Solids”. Ed. V. D. Frechette; Part 12, p. 297–321. New York: J. Wiley & Sons 1960.Google Scholar
  73. 73.
    Ham, J. S.: Viscoelastic theory of branched and cross-linked polymers. J. Chem. Phys. 26, 625–633 (1957).CrossRefGoogle Scholar
  74. 74.
    Handbook of Chemistry and Physics. 41th Ed. Chemical Rubber Publishing Co. Cleveland, Ohio (1959–1960).Google Scholar
  75. 75.
    Hellwege, K. H., W. Knappe u. P. Lehmann: Die isotherme Kompressibilität einiger amorpher und teilkristalliner Hochpolymeren im Temperaturbereich von 20–250‡C und bei Drücken bis zu 2000 Kp/cm2. Kolloid-Z. 183, 110–120 (1962a).Google Scholar
  76. 76.
    -- W. Wetzel: Spezifische Wärme von Polyolefinen und einigen anderen Hochpolymeren im Temperaturbereich von 30–180‡C. Kolloid-Z. 180, 126–134 (1962b).Google Scholar
  77. 77.
    Herzfeld, K. F., and T. A. Litovitz: Absorption and Dispersion of Ultrasonic Waves. New York: Academic Press 1959.Google Scholar
  78. 78.
    Hirai, N., and H. Eyring: Bulk viscosity of liquids. J. Appl. Phys. 29, 810–816 (1958).CrossRefGoogle Scholar
  79. 79.
    -- Bulk viscosity of polymeric systems. J. Polymer Sci. 37, 51–70 (1959).Google Scholar
  80. 80.
    Hoffman, J. D., and J. J. Weeks: Specific volume and degree of crystallinity of semicrystalline polychlorotrifluoroethylene, and estimated specific volumes of the pure amorphous and crystalline phases. J. Research Nat. Bur. Standards 60, 465–479 (1958).Google Scholar
  81. 81.
    Illers, K. H.: Die Glastemperatur von Copolymeren. Kolloid-Z. 190, 16–34 (1963).Google Scholar
  82. 82.
    Jahnke, E., and F. Emde: Tables of functions. New York: Dover publication 1945.Voir aussi: “Mathematical Tables”, Vol. I. Ed. British Association for the Advancement of Science. 2nd Edition p. 31–33. Cambridge: University Press 1946.Google Scholar
  83. 83.
    Jenckel, E.: Die Vorgänge bei Abkühlung von Gläsern und Kunstharzen. Z. Elektrochem. 43, 796–806 (1937).Google Scholar
  84. 84.
    -, u. R. Heusch: Die Erniedrigung der Einfriertemperatur organischer Gläser durch Lösungsmittel. Kolloid-Z. 130, 89–105 (1953).Google Scholar
  85. 85.
    -, u. G. Rehage: Die glasige Erstarrung der Hochpolymeren, p. 608–638, in: Die Physik der Hochpolymeren. Vol. III. Ed. H. A. Stuart. Berlin-Göttingen-Heidelberg: Springer-Verlag 1955.Google Scholar
  86. 86.
    Kanig, G.: Zur Theorie der Glastemperatur von Polymerhomologen, Copolymeren und weichgemachten Hochpolymeren. Kolloid-Z. 190, 1–16 (1963).Google Scholar
  87. 87.
    Kauzmann, W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).CrossRefGoogle Scholar
  88. 88.
    Kelley, F. N., and F. Bueche: Viscosity and glass temperature relations for polymer-diluent systems. J. Polymer Sci. 50, 549–556 (1961).Google Scholar
  89. 89.
    Klug, H. P.: X-ray study of red monoclinic selenium. Proof of existence of two red monoclinic varieties of selenium. Z. Krist. A88, 128–135 (1934).Google Scholar
  90. 90.
    Koglin, W.: Kurzes Handbuch der Chemie. Göttingen. Vandenhoeck & Ruprecht 1951.Google Scholar
  91. 91.
    Kovacs, A. J.: Sur la contraction isotherme du polystyrolène. Compt. rend. 235, 1127–1129, et 1648–1650 (1952).Google Scholar
  92. 92.
    - Contribution à l'étude de l'évolution isotherme du volume des hautspolymères. Thèse Fac. Sci. Paris 1954. Publié dans l'Industrie des Plastiques Modernes (Paris) 1955.Google Scholar
  93. 93.
    - Sur la cinétique de crystallisation partielle du polychlorure de vinyle. Compt. rend. 243, 50–53 (1956).Google Scholar
  94. 94.
    - La contraction isotherme du volume des polymères amorphes. J. Polymer. Sci. 30, 131–147 (1958).Google Scholar
  95. 95.
    - Une théorie phénoménologique de l'évolution isotherme des verres trempés. Compt. rend. 250, 109–111 (1960).Google Scholar
  96. 96.
    - La viscosité volumétrique des liquides surfondus au voisinage de leur transition vitreuse. p. 191–212 dans «Phénomènes de relaxation et de fluage en rhéologie non-linéaire». Edité par le C. N. R. S. Paris (1961a).Google Scholar
  97. 97.
    - Bulk creep and recovery in systems with viscosity dependent upon free volume. Trans. Soc. Rheology 5, 285–296 (1961b).CrossRefGoogle Scholar
  98. 98.
    -, R. A. Stratton and J. D. Ferry: Dynamic mechanical properties of polyvinyl acetate in shear in the glass transition temperature range. J. Phys. Chem. 67, 152–161 (1963).Google Scholar
  99. 99.
    Kronig, R. de L.: Zur Theorie der Relaxationserscheinungen. Physik. Z. 39, 823–830 (1938).Google Scholar
  100. 100.
    Kurkjian, C. R.: Relaxation of torsional stress in the transformation range. Phys. Chem. Glasses, à paraÎtre (1963).Google Scholar
  101. 101.
    KuvsHiNSKii, E. V., et. A. V. Sidorovich: 6e Conférence sur les polymères, Léningrad, 1959. Référence de Sharonov et Volkenstein (1962).Google Scholar
  102. 102.
    Landel, R. F.: The dynamic mechanical properties of a model filled system: Polyisobutylene-Glass Beads. Trans. Soc. Rheology 2, 53–75 (1958).CrossRefGoogle Scholar
  103. 103.
    Leaderman, H.: Elastic and creep properties of filamentous materials, p. 175. Textile foundation, Washington, D. C. (1943).Google Scholar
  104. 104.
    Lillie, H. R.: Viscosity-time-temperature relations in glass at annealing temperatures. J. Am. Ceram. Soc. 16, 619–631 (1933).Google Scholar
  105. 105.
    Litovitz, T. A.: Origin of ultrasonic volume viscosity in associated liquids. J. Acoust. Soc. Am. 30, 210–214 (1958).Google Scholar
  106. 106.
    -, and T. Lyon: Ultrasonic velocity in the liquid-glass transition region. J. Acoust. Soc. Am. 30, 856–859 (1958).Google Scholar
  107. 107.
    - Ultrasonic spectroscopy of liquids. J. Acoust. Soc. Am. 31, 681–691 (1959).CrossRefGoogle Scholar
  108. 108.
    - Liquid relaxation phenomena and the glass state, in “Non-crystalline solids”. Ed. V. D. Frechette, Part 10, p. 252–268. New York: J. Wiley & Sons, 1960.Google Scholar
  109. 109.
    -, and C. M. Davis: Structural and shear relaxation in liquids in “Physical Acoustics”. Ed. W. P. Mason (to be published) (1963).Google Scholar
  110. 110.
    Loshaek, S.: Crosslinked polymers. II. Glass temperatures of copolymers of methyl methacrylate and glycol dimethacrylates. J. Polymer Sci. 15, 391–404 (1955).Google Scholar
  111. 111.
    Macedo, P., and T. A. Litovitz: Communication privée à publier (voir Litovitz et Davis, 1963).Google Scholar
  112. 112.
    Malherbe, F. E., and H. J. Bernstein: Infrared spectra of rapidly solidified vapors. J. Chem. Phys. 19, 1607–1608 (1951).CrossRefGoogle Scholar
  113. 113.
    Mandelkern, L., G. M. Martin and F. A. Quinn: Glassy state transition of Poly(chlorotrifluoroethylene), Poly(vinylidene fluoride) and their copolymers. J. Research Nat. Bur. Standards 58, 137–143 (1957).Google Scholar
  114. 114.
    Martin, G. M., S. S. Rogers and L. Mandelkern: Volume-temperature relations of amorphous polymers over extended temperature range. J. Polymer Sci. 20, 579–581 (1956).Google Scholar
  115. 115.
    -, and L. Mandelkern: Glass formation in polymers. II. The system rubbersulfur. J. Research Nat. Bur. Standards 62, 141–146 (1959).Google Scholar
  116. 116.
    --Bulk creep and recovery. To be published. J. Appl. Phys. (1963).Google Scholar
  117. 117.
    Matsuoka, S., and B. Maxwell: Response of linear high polymers to hydrostatic pressure. J. Polymer Sci. 32, 131–159 (1958).Google Scholar
  118. 118.
    McDuffie, G. E. jr., and T. A. Litovitz: Dielectric relaxation in associated liquids. J. Chem. Phys. 37, 1699–1706 (1962).Google Scholar
  119. 119.
    McKenzie, J. D.: Viscous flow of liquids at constant volume and constant pressure. J. Chem. Phys. 28, 1037–1039 (1958).Google Scholar
  120. 120.
    McKinney, J. E., H. V. Belcher and R. S. Marvin: The dynamic compressibility of a rubber-sulfur vulcanisate and its relation to free volume. Trans. Soc. Rheology 4, 347–362 (1960).CrossRefGoogle Scholar
  121. 121.
    -- Dynamic compressibility of polyvinylacetate and its relation to free volume. J. Research Nat. Bur. Standards 67 A, 43–53 (1963).Google Scholar
  122. 121.
    Meares, P.: The second-order transition of polyvinyl acetate. Trans. Faraday Soc. 53, 31–40 (1957).Google Scholar
  123. 123.
    Meister, R., C. J. Marhoeffer, R. Sciamanda, L. Cotter and T. A. Litovitz: Ultrasonic viscoelastic properties of associated liquids. J. Appl. Phys. 31, 854–870 (1960).CrossRefGoogle Scholar
  124. 124.
    Meixner, J.: Thermodynamische Theorie der elastischen Relaxation. Z. Naturforsch. 9 a, 654–663 (1954).Google Scholar
  125. 125.
    Miller, A. A.: The reference point for liquid relaxation processes. III. Melt viscosity of n-alkanes. G. E. Report nℴ 62-RL-3142 E (1962). J. Phys. Chem. To be published.Google Scholar
  126. 126.
    -Relaxation free volume in liquids. Effect of pressure. G. E. Report nℴ 63-RL-3294 E (1963 a).Google Scholar
  127. 127.
    - The reference point for liquid relaxation processes. II. Melt viscosity of polyisobutylene. J. Polymer Sci. 1 A, 1865–1874 (1963b).Google Scholar
  128. 128.
    -Free volume in polystyrene and polyisobutylene. J. Polymer Sci. To be published (1963 c).Google Scholar
  129. 129.
    Miller, R. L., and L. E. Nielsen: Crystallographic data for various polymers. J. Polymer Sci. 44, 391–395 (1960).Google Scholar
  130. 130.
    Nakada, O.: Theory of viscoelasticity of amorphous polymers. III. Dispersion of dynamic bulk modulus. J. Polymer Sci 43, 149–165 (1960).Google Scholar
  131. 131.
    O'Reilly, J. M.: The effect of pressure on glass temperature and dielectric relaxation time of polyvinyl acetate. J. Polymer Sci. 57, 429–444 (1962).Google Scholar
  132. 132.
    -Communication privée (1963).Google Scholar
  133. 132.
    Parks, G. S., H. M. Huffman and F. R. Cattoir: Studies on glass. II. The transition between the glassy and liquid states in the case of glucose. J. Phys. Chem. 32, 1366–1379 (1928).Google Scholar
  134. 134.
    -, L. E. Barton, M. E. Spaght and J. W. Richardson: The viscosity of undercooled liquid glucose. Physics 5, 193–199 (1934).CrossRefGoogle Scholar
  135. 135.
    Partington, J. R.: An advanced treatrise on physical chemistry. Vol. II. p. 36–57 et p. 89–110. 2e Edition. London, New York: Longmans, Green & Co. 1955.Google Scholar
  136. 136.
    Prigogine, I, et. R. Defay: Thermodynamique chimique. Ed. Desoer, Liège (1950).Google Scholar
  137. 137.
    Primak, W.: Fast-Neutron-induced changes in quartz and vitreous silica. Phys. Rev. 110, 1240–1254 (1958).CrossRefGoogle Scholar
  138. 138.
    Prod'Homme, M.: Contribution à l'étude de la viscosité des verres. Thése Fac. Sci. Paris, 1960-voir aussi: Verres et réfractaires 14, 261–273 (1960).Google Scholar
  139. 139.
    Ptitsyn, O. B.: Cinétique de stabilisation des verres. Doklady akad. Sci. URSS, 103, 1045–1048 (1955).Google Scholar
  140. 140.
    Reiner, M.: Phenomenological macrorheology p. 9–60 dans “Rheology”. Ed. F. R. Eirich, vol. I. New York: Academic Press 1956.Google Scholar
  141. 141.
    Ritland, H. N.: Density phenomena in the transformation of a borosilicate crown glass. J. Am. Ceram. Soc. 37, 370–378 (1954).Google Scholar
  142. 142.
    - The stress-time relation in glass during annealing. Trans. Soc. Glass Techn. 39, 99–112 (1955).Google Scholar
  143. 143.
    - Limitations of the fictive temperature concept. J. Am. Ceram. Soc. 39, 403–406 (1956).Google Scholar
  144. 144.
    Rogers, S. S., and L. Mandelkern: Glass formation in polymers. I. The glass transitions of the poly(n-alkyl methacrylates). J. Phys. Chem. 61, 985–990 (1957).Google Scholar
  145. 145.
    Peyches, I.: The viscous flow of glass at low temperatures. Trans. Soc. Glass Techn. 36, 164–180 (1952).Google Scholar
  146. 146.
    Saito, S., and T. Nakajima: Glass transition in polymers. J. Appl. Polymer. Sci. 2, 93–99 (1959).Google Scholar
  147. 147.
    - Temperature dependence of dielectric relaxation behaviour for various polymer systems. Kolloid-Z. 189, 116–125 (1963).Google Scholar
  148. 148.
    Schatzki, T. F.: Theory of measurement of transition temperatures by dilatometry. I. Glass transition temperature, Williams-Landel-Ferry Approximations. Techn. Rep. nℴ 55–61, Shell Development Co. Emeryville, California (1961).Google Scholar
  149. 149.
    Schulz, A. K.: Sur les relations entre la dispersion de la vitesse du son, chaleur spécifique, la densité et la conductivité thermique de la glycérine surfondue et cristallisée. J. chim. phys. 51, 530–533 (1954); voir aussi: J. chim. phys. 51, 324–327 (1954).Google Scholar
  150. 150.
    Schwarzl, F., and A. J. Staverman: Time-temperature dependence of linear viscoelastic behavior. J. Appl. Phys. 23, 838–843 (1952).CrossRefGoogle Scholar
  151. 151.
    Sekiguti, T.: Glass transformation of amorphous selenium. Sci. Papers Inst. Phys. Chem. Res. 54, 281–284 (1960).Google Scholar
  152. 152.
    Sharonov, Yu. A., and M. V. Volkenstein: Co-operative effects in the annealing and softening range of polyvinyl acetate. Vysokomol. Soed. 4, 917–921 (1962).Google Scholar
  153. 153.
    Simha, R., and R. F. Boyer: On a general relation involving the glass temperature and coefficients of expansion of polymers. J. Chem. Phys. 37, 1003–1007 (1962).CrossRefGoogle Scholar
  154. 154.
    Simon, F.: 25 Jahre Nernstscher Wärmesatz. Ergeb. exakt. Naturw. 9, 222–274 (1930).Google Scholar
  155. 155.
    - über den Zustand der unterkühlten Flüssigkeiten und Gläser. Z. anorg. allgem. Chem. 203, 220–227 (1931).CrossRefGoogle Scholar
  156. 156.
    Singh, H., and A. W. Nolle: Pressure dependence of the viscoelastic behavior of polyisobutylene. J. Appl. Phys. 30, 337–341 (1959).CrossRefGoogle Scholar
  157. 157.
    Spencer, R. S.: Volume-temperature-time relationships for polystyrene. J. Colloid Sci. 4, 229–240 (1949).Google Scholar
  158. 158.
    Staverman, A. J.: Quantitative relations concerning the glass transition point. Kurzmitteilungen, Symposium über Macromoleküle in Wiesbaden. Sektion I A9. Oct. 1959.Google Scholar
  159. 159.
    Tammann, G.: über Gläser als unterkühlte Flüssigkeiten. Glastech. Ber. 3, 73–87 (1925/26).Google Scholar
  160. 160.
    -, u. G. Hesse: Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten. Z. anorg. allgem. Chem. 156, 245–251 (1926).Google Scholar
  161. 161.
    -Der Glaszustand. Ed. L. Voss. Leipzig (1930).Google Scholar
  162. 162.
    Tool, A. Q., and C. G. Eichlin: Variations caused in heating curves of glass by heat-treatment. J. Am. Ceram. Soc. 14, 276–308 (1931).Google Scholar
  163. 163.
    - Viscosity and extraordinary heat effects in glass. J. Research Nat. Bur. Standards 37, 73–90 (1946). Res. Pap. RP1730; voir aussi: J. Am. Ceram. Soc. 29, 240–253 (1946).Google Scholar
  164. 164.
    - Effect of heat-treatment on density and constitution of high-silica-glasses of the borosilicate type. J. Am. Ceram. Soc. 31, 177–186 (1948).Google Scholar
  165. 165.
    -, and J. B. Saunders: Expansion effects of annealing borosilicate thermometer glasses. J. Research Nat. Bur. Standards 42, 171–182 (1949); Res. Pap. RP1960.Google Scholar
  166. 166.
    Turnbull, D., and M. H. Cohen: Cristallization kinetics and glass formation p. 38–60 in “Modern aspects of the vitrous state”; Ed. J. D. McKenzie. London: Butterworth et Co. Ltd. 1960.Google Scholar
  167. 167.
    -- Free volume model of the amorphous phase: glass transition. J. Chem. Phys. 34, 120–125 (1961).Google Scholar
  168. 168.
    Twyman, F.: The annealing of glass. J. Soc. Glass Techn. 1, 61–73 (1917).Google Scholar
  169. 169.
    Ueberreiter, K., and G. Kanig: Self-plasticization of polymers. J. Colloid Sci. 7, 569–583 (1952).CrossRefGoogle Scholar
  170. 170.
    Ueberreiter, K., u. H. J. Orthmann: Die Viscosität glasigen Selens von 0‡-100‡C. Kolloid-Z. 123, 84–91 (1951).Google Scholar
  171. 171.
    Vogel, H.: Das Temperaturabhängigkeitsgesetz der Viscosität von Flüssigkeiten. Physik. Z. 22, 645–646 (1921).Google Scholar
  172. 172.
    Volkenstein, M. V., et O. B. Ptitsyn: Théorie de relaxation de la vitrification. Doklady Acad. Sci. URSS, 103, 795–798 (1955).Google Scholar
  173. 173.
    -- The relaxation theory of vitrification. I. Solution and investigation of the basic equation. Sov. Phys. Techn. Phys. 26, 2204–2222 (1956). Traduction anglaise: American Institute of Phys. Inc. New York, J. Techn. Phys. Acad. Sci. URSS, 1, 2138–2156 (1957).Google Scholar
  174. 174.
    -, et Yu. A. Sharonov: Influence du recuit sur la variation de chaleur spécifique des polymères vitreux dans le domaine de transition. Vysokomol. Soed. 3, 1739–1745 (1961).Google Scholar
  175. 175.
    Wada, Y., H. Hirose and T. Asano: On the dynamic mechanical properties of polymers at ultrasonic frequencies in relation to their glass transition phenomena. J. Phys. Soc. Japan 14, 1064–1072 (1959).Google Scholar
  176. 176.
    --, H. Umebayashi and M. Otomo: Volume viscoelasticity of polymers and other highly dissipative materials. J. Phys. Soc. Japan 15, 2324–2334 (1960).Google Scholar
  177. 177.
    Whittaker, E. T., and G. N. Watson: A course of modern analysis, p. 150 to 159. Cambridge Univ. Press 1940.Google Scholar
  178. 178.
    Williams, M. L., and J. D. Ferry: Dynamic mechanical properties of polyvinylacetate. J. Colloid Sci. 9, 479–492 (1954).CrossRefGoogle Scholar
  179. 179.
    -, R. F. Landel and J. D. Ferry: The temperature dependence of relaxation mechanisms in amorphous polymers and other glassforming liquids. J. Am. Chem. Soc. 77, 4701–4707 (1955).Google Scholar
  180. 180.
    - Free volume approach to polystyrene melt viscosity. J. Appl. Phys. 29, 1395–1398 (1958).Google Scholar
  181. 181.
    Winter, A.: Transformation region of glass. J. Am. Ceram. Soc. 26, 189–200 (1943).Google Scholar
  182. 182.
    Wood, L. A.: Glass transition temperatures of copolymers. J. Polymer. Sci. 28, 319–330 (1958).Google Scholar
  183. 183.
    Wunderlich, B.: Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J. Phys. Chem. 64, 1052–1056 (1960).Google Scholar
  184. 184.
    Zijlstra, A. L.: The viscosity of some silicate glasses in connection with thermal history. Phys. Chem. Glasses; to be published (1963).Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • A. J. Kovacs
    • 1
  1. 1.Centre de Recherches sur les MacromoléculesStrasbourgFrance

Personalised recommendations