Skip to main content

Optimization algorithms for large networks

  • Invited Lecture
  • Conference paper
  • First Online:
Algorithms — ESA '94 (ESA 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 855))

Included in the following conference series:

  • 174 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding Minimum-Cost Flows by Double Scaling. Math. Prog., 53:243–266, 1992.

    Article  MathSciNet  Google Scholar 

  2. R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster Algorithms for the Shortest Path Problem. Technical Report CS-TR-154-88, Department of Computer Science, Princeton University, 1988.

    Google Scholar 

  3. R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved Time Bounds for the Maximum Flow Problem. SIAM J. Comput., 18:939–954, 1989.

    Article  MathSciNet  Google Scholar 

  4. R. J. Anderson and J. C. Setubal. Goldberg's Algorithm for the Maximum Flow in Perspective: a Computational Study. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 1–18. AMS, 1993.

    Google Scholar 

  5. R. E. Bellman. On a Routing Problem. Quart. Appl. Math., 16:87–90, 1958.

    MATH  MathSciNet  Google Scholar 

  6. J. L. Bentley. Writing Eficient Programs. Prentice-Hall, 1982.

    Google Scholar 

  7. D. P. Bertsekas. A Distributed Algorithm for the Assignment Problem. Unpublished Manuscript, Lab. for Decision Systems, M.I.T., 1979.

    Google Scholar 

  8. D. P. Bertsekas and P. Tseng. Relaxation Methods for Minimum Cost Ordinary and Generalized Network Flow Problems. Oper. Res., 36:93–114, 1988.

    MathSciNet  Google Scholar 

  9. R. G. Bland, J. Cheriyan, D. L. Jensen, and L. Ladańyi. An Empirical Study of Min Cost Flow Algorithms. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 119–156. AMS, 1993.

    Google Scholar 

  10. R. G. Bland and D. L. Jensen. On the Computational Behavior of a Polynomial-Time Network Flow Algorithm. Math. Prog., 54:1–41, 1992.

    Article  MathSciNet  Google Scholar 

  11. D. A. Castañon. Reverse Auction Algorithms for the Assignment Problems. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 407–430. AMS, 1993.

    Google Scholar 

  12. J. Cheriyan, T. Hagerup, and K. Mehlhorn. Can a Maximum Flow be Computed in o(nm) Time? In Proc. ICALP, 1990.

    Google Scholar 

  13. B. V. Cherkassky. Personal communication. 1991.

    Google Scholar 

  14. B. V. Cherkassky and A. V. Goldberg. Efficient Implementation of Push-Relabel Method for the Maximum Flow Problem. In preparation.

    Google Scholar 

  15. B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory and Experimental Evaluation. Technical Report STAN-CS-93-1480, Department of Computer Science, Stanford University, 1993.

    Google Scholar 

  16. B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortest Paths Algorithms: Theory and Experimental Evaluation. In Proc. 5th ACM-SIAM Symposium on Discrete Algorithms, pages 516–525, 1994.

    Google Scholar 

  17. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  18. G. B. Dantzig. Application of the Simplex Method to a Transportation Problem. In T. C. Koopmans, editor, Activity Analysis and Production and Allocation, pages 359–373. Wiley, New York, 1951.

    Google Scholar 

  19. G. B. Dantzig. Linear Programming and Extensions. Princeton Univ. Press, Princeton, NJ, 1962.

    Google Scholar 

  20. U. Derigs. The Shortest Augmenting Path Method for Solving Assignment Problems — Motivation and Computational Experience. Annals of Oper. Res., 4:57–102, 1985/6.

    MathSciNet  Google Scholar 

  21. U. Derigs and W. Meier. Implementing Goldberg's Max-Flow Algorithm — A Computational Investigation. ZOR — Methods and Models of Operations Research, 33:383–403, 1989.

    MathSciNet  Google Scholar 

  22. U. Derigs and W. Meier. An Evaluation of Algorithmic Refinements and Proper Data-Structures for the Preflow-Push Approach for Maximum Flow. In ASI Series on Computer and System Sciences, volume 8, pages 209–223. NATO, 1992.

    Google Scholar 

  23. R. B. Dial. Algorithm 360: Shortest Path Forest with Topological Ordering. Comm. ACM, 12:632–633, 1969.

    Article  Google Scholar 

  24. E. W. Dijkstra. A Note on Two Problems in Connection with Graphs. Numer. Math., 1:269–271, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  25. E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation. Soviet Math. Dokl., 11:1277–1280, 1970.

    MATH  Google Scholar 

  26. E. A. Dinic. Metod porazryadnogo sokrashcheniya nevyazok i transportnye zadachi. In Issledovaniya po Diskretnoi Matematike. Nauka, Moskva, 1973. In Russian. Title translation: Excess Scaling and Transportation Problems.

    Google Scholar 

  27. J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. Assoc. Comput. Mach., 19:248–264, 1972.

    Google Scholar 

  28. L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962.

    Google Scholar 

  29. M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms. J. Assoc. Comput. Mach., 34:596–615, 1987.

    MathSciNet  Google Scholar 

  30. M. L. Fredman and D. E. Willard. Trans-dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths. In Proc. 31st IEEE Annual Symposium on Foundations of Computer Science, pages 719–725, 1990.

    Google Scholar 

  31. D. R. Fulkerson. An Out-of-Kilter Method for Minimal Cost Flow Problems. SIAM J. Appl. Math, 9:18–27, 1961.

    Article  MATH  Google Scholar 

  32. H. N. Gabow and R. E. Tarjan. Faster Scaling Algorithms for Network Problems. SIAM J. Comput., pages 1013–1036, 1989.

    Google Scholar 

  33. G. Gallo and S. Pallottino. Shortest Paths Algorithms. Annals of Oper. Res., 13:3–79, 1988.

    MathSciNet  Google Scholar 

  34. F. Glover, R. Glover, and D. Klingman. Computational Study of an Improved Shortest Path Algorithm. Networks, 14:25–37, 1984.

    Google Scholar 

  35. F. Glover, D. Klingman, and N. Phillips. A New Polynomially Bounded Shortest Paths Algorithm. Oper. Res., 33:65–73, 1985.

    MathSciNet  Google Scholar 

  36. A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis, M.I.T., January 1987. (Also available as Technical Report TR-374, Lab. for Computer Science, M.I.T., 1987).

    Google Scholar 

  37. A. V. Goldberg. An Efficient Implementation of a Scaling Minimum-Cost Flow Algorithm. Technical Report STAN-CS-92-1439, Department of Computer Science, Stanford University, 1992.

    Google Scholar 

  38. A. V. Goldberg. An Efficient Implementation of a Scaling Minimum-Cost Flow Algorithm. In Proc. 3rd Integer Prog. and Combinatorial Opt. Conf., pages 251–266, 1993.

    Google Scholar 

  39. A. V. Goldberg. Scaling Algorithms for the Shortest Paths Problem. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms, pages 222–231, 1993.

    Google Scholar 

  40. A. V. Goldberg and R. Kennedy. An Efficient Cost Scaling Algorithm for the Assignment Problem. Technical Report STAN-CS-93-1481, Department of Computer Science, Stanford University, 1993.

    Google Scholar 

  41. A. V. Goldberg and M. Kharitonov. On Implementing Scaling Push-Relabel Algorithms for the Minimum-Cost Flow Problem. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 157–198. AMS, 1993.

    Google Scholar 

  42. A. V. Goldberg and T. Radzik. A Heuristic Improvement of the Bellman-Ford Algorithm. Applied Math. Let., 6:3–6, 1993.

    MathSciNet  Google Scholar 

  43. A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach., 35:921–940, 1988.

    MathSciNet  Google Scholar 

  44. A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Successive Approximation. Math. of Oper. Res., 15:430–466, 1990.

    MathSciNet  Google Scholar 

  45. D. Goldfarb and M. D. Grigoriadis. A Computational Comparison of the Dinic and Network Simplex Methods for Maximum Flow. Annals of Oper. Res., 13:83–123, 1988.

    MathSciNet  Google Scholar 

  46. M. D. Grigoriadis. An Efficient Implementation of the Network Simplex Method. Math. Prog. Study, 26:83–111, 1986.

    MATH  MathSciNet  Google Scholar 

  47. J. Hao and G. Kocur. An Implementation of a Shortest Augmenting Path Algorithm for the Assignment Problem. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 453–468. AMS, 1993.

    Google Scholar 

  48. D. B. Johnson and S. Venkatesan. Using Divide and Conquer to Find Flows in Directed Planar Netwroks in O(n 1.5 log n) Time. In Proc. 20th Annual Allerton Conf. on Communication, Control, and Computing, pages 898–905, 1982.

    Google Scholar 

  49. D. S. Johnson and C. C. McGeoch, editors. Network Flows and Matching: F1rst DIMACS Implementation Challenge. AMS, 1993.

    Google Scholar 

  50. R. M. Karp, R. Motwani, and N. Nisan. Probabilistic Analysis of Network Flow Algorithms. Math. of Oper. Res., 18:71–97, 1993.

    MathSciNet  Google Scholar 

  51. A. V. Karzanov. Determining the Maximal Flow in a Network by the Method of Preflows. Soviet Math. Dok., 15:434–437, 1974.

    MATH  Google Scholar 

  52. J. L. Kennington and R. V. Helgason. Algorithms for Network Programming. John Wiley and Sons, 1980.

    Google Scholar 

  53. V. King, S. Rao, and R. Tarjan. A Faster Deterministic Maximum Flow Algorithm. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 157–164, 1992.

    Google Scholar 

  54. H. W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Res. Logist. Quart., 2:83–97, 1955.

    MATH  MathSciNet  Google Scholar 

  55. B. Ju. Levit and B. N. Livshits. Neleneinye Setevye Transportnye Zadachi. Transport, Moscow, 1972. In Russian.

    Google Scholar 

  56. G. J. Minty. Monotone Networks. Proc. Roy. Soc. London, A(257):194–212, 1960.

    MATH  MathSciNet  Google Scholar 

  57. E. F. Moore. The Shortest Path Through a Maze. In Proc. of the Int. Symp. on the Theory of Switching, pages 285–292. Harvard University Press, 1959.

    Google Scholar 

  58. R. Motwani. Expanding Graphs and the Average-case Analysis of Algorithms for Matchings and Related Problems. In Proc. 21st Annual ACM Symposium on Theory of Computing, pages 550–561, 1989.

    Google Scholar 

  59. Q. C. Nguyen and V. Venkateswaran. Implementations of Goldberg-Tarjan Maximum Flow Algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 19–42. AMS, 1993.

    Google Scholar 

  60. J. B. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algorithm. In Proc. 20th Annual ACM Symposium on Theory of Computing, pages 377–387, 1988.

    Google Scholar 

  61. S. Pallottino. Shortest-Path Methods: Complexity, Interrelations and New Propositions. Networks, 14:257–267, 1984.

    MATH  Google Scholar 

  62. U. Pape. Implementation and Efficiency of Moore Algorithms for the Shortest Root Problem. Math. Prog., 7:212–222, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  63. K. G. Ramakrishnan, N. K. Karmarkar, and A. P. Kamath. An Approximate Dual Projective Algorithm for Solving Assignment Problems. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 431–452. AMS, 1993.

    Google Scholar 

  64. M. G. C. Resende and G. Veiga. An Efficient Implementation of a Network Interior Point Method. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 299–348. AMS, 1993.

    Google Scholar 

  65. H. Röck. Scaling Techniques for Minimal Cost Network Flows. In U. Pape, editor, Discrete Structures and Algorithms, pages 181–191. Carl Hansen, Münich, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan van Leeuwen

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, A.V. (1994). Optimization algorithms for large networks. In: van Leeuwen, J. (eds) Algorithms — ESA '94. ESA 1994. Lecture Notes in Computer Science, vol 855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0049391

Download citation

  • DOI: https://doi.org/10.1007/BFb0049391

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58434-6

  • Online ISBN: 978-3-540-48794-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics