Advertisement

Towards a mathematical theory of processes

  • H. Bekić
Selected Papers Parallelism
Part of the Lecture Notes in Computer Science book series (LNCS, volume 177)

Abstract

A recent „mathematical” approach to the semantics of programming languages is extended to allow for quasi-parallel execution of processes. A notion of „action” is proposed as a formalization of the kind of process involved, and various ways of action composition are studied. The relevance of the approach for applications in the areas of language design, language description, and proof of program correctness is indicated.

Keywords

State Transformation Language Design Program Schema Semantical Approach Serial Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    BEKIC, H.: On the Formal Definition of Programming Languages.— In: Proceedings of the International Computing Symposium, Bonn, 1970, to appear.Google Scholar
  2. /2/.
    BEKIC, H.: An Introduction to Algol 68.— IBM Laboratory Vienna, Techn. Report TR 25.118, 1971.Google Scholar
  3. /3/.
    BEKIC, H., WALK, K.: Formalization of Storage Properties.— In: Symposium on Semantics of Algorithmic Languages, (E. Engeler, ed.), Springer Lecture Notes, Vol. 188 (1971), pp. 28–61.MathSciNetGoogle Scholar
  4. /4/.
    BURSTALL, R., LANDIN, P.: Programs and their Proofs: an Algebraic Approach.— In: Machine Intelligence 4, (D. Michie, ed.), Elsevier New York (1969) pp. 17–43.Google Scholar
  5. /5/.
    HOARE, C.A.R.: Towards a Theory of Parallel Programming.— The Queen's University of Belfast, 1970.Google Scholar
  6. /6/.
    JONES, C.B., LUCAS, P.: Proving Correctness of Implementation Techniques.— Springer Lecture Notes, Vol. 188 (1971), pp. 178–211.MathSciNetGoogle Scholar
  7. /7/.
    KARP, R.M., MILLER, R.E.: Parallel Program Schemata.— J. of Computer and System Sciences, 3 (1969), pp. 147–195.MathSciNetGoogle Scholar
  8. /8/.
    LANDIN, P.: A Program Machine Symmetric Automata Theory.— In: Machine Intelligence 5 (B. Meltzer, D. Michie, eds.), Elsevier New York (1970), pp. 99–120.Google Scholar
  9. /9/.
    MORRIS, F.L.: The next 700 Formal Language Descriptions.— University of Essex, 1971.Google Scholar
  10. /10/.
    PAIR, C.: Concerning the Syntax of Algol 68.— Algol Bulletin No. 31 (1970), pp. 16–27.Google Scholar
  11. /11/.
    PETRI, C.A.: Kommunikation mit Automaten.— Schriften des Rheinisch-Westfälischen Institutes für Instrumentelle Mathematik, Bonn, 1962.Google Scholar
  12. /12/.
    SCOTT, D.: Outline of a Mathematical Theory of Computation.— In: Proceedings of the Fourth Annual Princeton Conference on Information Sciences and Systems, 1970, pp. 169–176.Google Scholar
  13. /13/.
    SCOTT, D.: The Lattice of Flowdiagrams.— Springer Lecture Notes, 188 (1970), pp. 311–366.Google Scholar
  14. /14/.
    SCOTT, D.: Lattice-theoretic Models for the λ-Calculus.— IFIP WG 2.2 Bulletin No.5, 1970.Google Scholar
  15. /15/.
    SCOTT, D., STRACHEY, C.: Toward a Mathematical Semantics for Computer Languages.— In: Proceedings of the Symposium on Computers and Automata, Brooklyn, to appear.Google Scholar
  16. /16/.
    WALK, K., et al.: Abstract Syntax and Interpretation of PL/I.— IBM Laboratory Vienna, Techn. Report TR 25.098, 1969.Google Scholar
  17. /17/.
    WIJNGAARDEN, A. van (ed.): Report on the Algorithmic Language Algol 68.— Num. Math. 14 (1969), pp. 79–218.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • H. Bekić
    • 1
  1. 1.IBM Laboratory ViennaAustria

Personalised recommendations