Skip to main content

Simultaneous bombardment of wide bandgap materials with UV excimer irradiation and keV electrons

  • Part VI Poster Presentations
  • Conference paper
  • First Online:
Laser Ablation Mechanisms and Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 389))

Abstract

In previous works1 we examined the changes in the surface topography of sodium trisilicate glass (Na2O-3SiO2) with exposure to pulsed 248 nm excimer laser light at fluences of 2.6-5 J/cm2, as well as the character of the products emitted from the glass surface (e.g., +/- ions, electrons, ground state and excited neutral atoms and molecules). At these fluences, ablation readily occurs after a fixed number of preliminary laser pulses (an effect known as incubation). In the current study, we examine the precursors of this high fluence behavior at sub-threshold fluences < 2.6 J/cm2 and show that the effectiveness of laser bombardment in removing material is strongly dependent on defects produced either by high fluence 248 nm radiation or by electron radiation. We show a dramatic synergism in the ablation process by simultaneous bombardment of the glass surface with 0.5-2 keV electrons and laser pulses. A model is discussed involving surface and near-surface defects created by the electron beam that provide single photon absorption centers and free electron--laser heating. We also show that similar results are obtained on single crystal NaCl, LiF, and UV grade fused silica. The potential for performing single photon driven etching/ablation on wide band gap dielectric materials is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. A. Eschbach, J. T. Dickinson, S. C. Langford, and L. R. Pederson, J. Vac. Sci. Technol. A7(5), 2943 (1989).

    ADS  Google Scholar 

  2. P. A. Eschbach, J. T. Dickinson, and L. R. Pederson, MRS Symp. Proc. 129, 385–392 (1989).

    Google Scholar 

  3. J. T. Dickinson, S. C. Langford, L. C. Jensen, P. A. Eschbach, L. R. Pederson, and D. R. Baer, J. Appl. Phys. 68, 1831 (1990).

    Article  ADS  Google Scholar 

  4. S. C. Langford, L. C. Jensen, J. T. Dickinson, and L. R. Pederson, J. Appl. Phys. 68, 4253 (1990).

    Article  ADS  Google Scholar 

  5. Yu. A. Bykovskii, N. N. Degtyarenko, V. E. Konrashov, and E. E. Lovetskii, Sov. Phys. Tech. Phys. 18, 1597 (1974).

    ADS  Google Scholar 

  6. G. Tetite, P. Agnostini, G. Boiziau, J. P. Vigouroux, C. Le Gressus, and J. P. Duraud, Optics Comm. 53, 189 (1985).

    Article  ADS  Google Scholar 

  7. A. Miotello and F. Toigo, Nucl. Instru. Methods Phys. Res. B32, 258 (1988).

    ADS  Google Scholar 

  8. T. L. Gilton and J. P. Cowin, “Laser Induced Electron Emission: Space Charge and Electron Acceleration,” conference presentation, ACS National Meeting 1988, L.A.

    Google Scholar 

  9. R. W. Dreyfus, “Are Laser-Ablated Monolayers Accurately Characterized by Their Ion Emission?,” in Microbeam Analysis 1989, P. E. Russell, Ed., San Francisco Press, Inc., San Francisco, pp. 261–263 (1989).

    Google Scholar 

  10. F. Ohuchi and P. H. Holloway, J. Vac. Sci. Technol. 20, 863 (1982).

    Article  ADS  Google Scholar 

  11. T. E. Tsai, D. L. Griscom, and E. J. Friebele, Phys. Rev. Lett. 61, 444 (1988).

    Article  ADS  Google Scholar 

  12. R. A. B. Devine, Phys. Rev. Lett. 62, 340 (1989).

    Article  ADS  Google Scholar 

  13. X. A. Shen, S. C. Jones, and P. Braunlich, Phys. Rev. Lett. 62, 2711 (1989).

    Article  ADS  Google Scholar 

  14. A. S. Epifanov, Sov. Phys. JETP 40, 897 (1975).

    ADS  Google Scholar 

  15. S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, Optical Engineering (1989).

    Google Scholar 

  16. J. E. Rowe, Appl. Phys. Lett. 25, 576 (1974).

    Article  ADS  Google Scholar 

  17. J. H. Stahis, M.A. Kestner, Phys. Rev. B, 29(12), 7079 (1984).

    Article  ADS  Google Scholar 

  18. K. Nagasawa, H. Mizuno, Y. Yamasaka, R. Tohmon, Y. Ohki, and Y. Hama, n The Physics and Techology of Amorphous SiO 2, R. A. B. Devine, ed., Plenum Press, New York, 1988, pp. 193–198.

    Google Scholar 

  19. K. Igarashi, H. Saito, T. Fumioka, S. Fujitsu, K. Koumoto, and H. Yanagida, J. Am. Ceram. Soc. 72, 2367 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John C. Miller Richard F. Haglund Jr.

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Dickinson, J.T., Langford, S.C., Jensen, L.C. (1991). Simultaneous bombardment of wide bandgap materials with UV excimer irradiation and keV electrons. In: Miller, J.C., Haglund, R.F. (eds) Laser Ablation Mechanisms and Applications. Lecture Notes in Physics, vol 389. Springer, New York, NY. https://doi.org/10.1007/BFb0048386

Download citation

  • DOI: https://doi.org/10.1007/BFb0048386

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97731-7

  • Online ISBN: 978-0-387-34818-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics