Skip to main content

Physics of pulsed laser ablation at 248 nm: Plasma energetics and Lorentz interactions

  • Part V Fundamental Physics
  • Conference paper
  • First Online:
Laser Ablation Mechanisms and Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 389))

Abstract

Pulsed KrF (248 nm) excimer laser ablation of targets can generate quasi-neutral ground state atomic particle plasmas with energies in the range of 200 -1100 eV. Onset of plasma formation occurs when optical intensities exceed 108 W/cm2. The expanding ensemble has a pronounced angular energy dependence, the highest energies peaked in the direction normal to the target. Correlation of the temporal nature of the laser pulse and the ensuing ion mass pulses suggest that transfer of energy is, indeed, a very rapid process -probably less than 5 ns. A wide range of elemental and several compound targets were studied to determine how ion energy distributions were influenced by atomic mass. The energetic plasma beams interact with magnetic fields as predicted from the Lorentz force. Results are consistent with an inverse bremsstrahlung and Lorentz force mechanism for particle acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. T. Cheung and H. Sankur, CRC Critical Review (Solid State Material Science) 15, 109 (1988).

    Google Scholar 

  2. A. Inam, M. S. Hegde, X. D. Wu, T. Venkatesan, P.England, P. F. Miceli, E. W. Chase, C. C. Chang, J. M.Tarascon and J. B. Wachtman Appl. Phys Lett. 53, 908 (1988); references therein.

    Article  ADS  Google Scholar 

  3. L. Lynds, B. R. Weinberger, G. G. Peterson and H. A. Krasinski, Appl. Phys. Lett. 52, 320 (1988).

    Article  ADS  Google Scholar 

  4. N. R. Isenor, Appl. Phys. Lett., 4, 152 (1964).

    Article  ADS  Google Scholar 

  5. N. R. Isenor, Can. J. Phys., 42, 1413 (1964).

    Google Scholar 

  6. H. Puell, Z. Naturforsh., 25A, 1807 (1970).

    ADS  Google Scholar 

  7. H. Puell, H. J. Neusser and W. Kaiser, Z. Naturforsch., 25A, 1815 (1970).

    ADS  Google Scholar 

  8. Yu. A. Bykovskii, V. I. Dorofeev, V. I. Dymovich, B. I. Nikolaev, S. Ryzhikh, S. M. Sil'nov, Zh. Tekh. Fiz. 38, 1194 (1968). [Transl: Sov. Phys. Tech. Phys.14, 1269 (1970)]

    Google Scholar 

  9. B. E. Paton and N. R. Isenor, E., Can. J. Phys. 46, 1237 (1968).

    Google Scholar 

  10. S. Namba, P. H. Kim and A. Mitsuyama, J. Appl. Phys., 37, 3330 (1966).

    Article  ADS  Google Scholar 

  11. C. Faure, A. Perez, G. Tonon, B. Aveneau and D. Parisot,Phys. Lett., 34A, 313 (1971).

    ADS  Google Scholar 

  12. D. W. Gregg and S. J. Thomas, J. Appl. Phys., 37, 2787 (1966).

    Article  ADS  Google Scholar 

  13. D. W. Gregg and S. J. Thomas, J. Appl. Phys., 37,4313 (1966).

    Article  ADS  Google Scholar 

  14. D. W. Gregg, S. J. Thomas, J. Appl. Phys., 38, 1729 (1967).

    Article  ADS  Google Scholar 

  15. J. F. Ready, Effects of High-power Laser Radiation. New York, Academic (1971).

    Google Scholar 

  16. G. J. Pert, J. Phys, A., 5, 506–15 (1972).

    Article  ADS  Google Scholar 

  17. S. Rand, Phys. Rev., 136, 231 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  18. G. J. Pert, J. Phys, A., 5, 506 (1972).

    Article  ADS  Google Scholar 

  19. L. Lynds, B. R. Weinberger, D.M. Potrepka, G. G. Peterson and M. P. Lindsay, Physica C 152, 61 (1989).

    Article  ADS  Google Scholar 

  20. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965) pp.461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John C. Miller Richard F. Haglund Jr.

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Lynds, L., Weinberger, B.R. (1991). Physics of pulsed laser ablation at 248 nm: Plasma energetics and Lorentz interactions. In: Miller, J.C., Haglund, R.F. (eds) Laser Ablation Mechanisms and Applications. Lecture Notes in Physics, vol 389. Springer, New York, NY. https://doi.org/10.1007/BFb0048378

Download citation

  • DOI: https://doi.org/10.1007/BFb0048378

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97731-7

  • Online ISBN: 978-0-387-34818-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics