Skip to main content

Excimer laser ablation of CdTe

  • Part II Desorption
  • Conference paper
  • First Online:
Laser Ablation Mechanisms and Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 389))

Abstract

KrF excimer laser irradiation (248 nm) of CdTe (100) at fluences below the melting threshold removes surface atoms and produces reversible changes in composition and structure that depend on the laser fluence and number of laser pulses. At fluences below 65 mJ/cm2, the products desorbed from the surface consist of neutral Cd atoms and Te2 molecules, and the velocity distributions of the desorbed products are well-described by a Maxwell-Boltzmann distribution. At higher fluences, Cd+, Te+, and Te2 + are also ejected, and the velocity distributions of the neutral and ion species become non-Maxwellian. Over the temperature range from 380–400°C the instantaneous laser-induced desorption rates are more than six orders of magnitude higher than the vacuum sublimation rates measured over the same temperature range. The composition of the CdTe surface can be reversibly controlled from stoichiometric to a Te-rich condition by varying the laser fluence over the range from 15 to 65 mJ/cm2. The dynamics of the photo-stimulated desorption and the fluence dependent changes in surface composition are described in terms of the kinetic competition between the formation and desorption of Te2 and the desorption of Cd atoms from the laseri-rradiated surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Nakayama, N. Itch, T. Kawai, K. Hashimoto, and T. Sakata, Radiat. Eff. Lett. 77, 129 (1982); T. Nakayama, M. Okigawa, and N. Itoh, Nucl. Instr. Meth. Phys. Res. B1, 301 (1984).

    Article  Google Scholar 

  2. K. Hattori, Y. Nakai, and N. Itoh, Surf. Sci. Lett. 227, L115 (1990).

    Article  Google Scholar 

  3. P.D. Brewer, J.J. Zinck, and G.L. Olson, Appl. Phys. Lett. 57, 2526 (1990).

    Article  ADS  Google Scholar 

  4. P.D. Brewer, J.J. Zinck, and G.L. Olson, to appear in Mat. Res. Soc. Symp. Proc. 201, (1991).

    Google Scholar 

  5. K. Ichige, Y. Matsumoto, and A. Namiki, Nucl. Instr. Meth. Phys. Res. B33, 820 (1988).

    Article  ADS  Google Scholar 

  6. V.M. Donnelly, V. McCrary, and D. Brasen, Mat. Res. Soc. Sym. Proc. 75, 567 (1987).

    Google Scholar 

  7. Y. Nakai, K. Hattori, A. Okano, N. Itch, and R.F. Haglund, Jr., Nucl. Instr. Meth. Phys. Res., in press 1991.

    Google Scholar 

  8. R. Kelly, J. Chem. Phys. 92, 5047 (1990).

    Article  ADS  Google Scholar 

  9. Y. Kumazaki, U. Nakai, and N. Itoh, Phys. Rev. Lett. 59, 2883 (1987).

    Article  ADS  Google Scholar 

  10. Y. Nakai, K. Hattori, and N. Itoh, Appl. Phys. Lett. 56, 1980 (1990).

    Article  ADS  Google Scholar 

  11. J.D. Cowin, D.J. Auerbach, C. Becker, and L. Wharton, Surf. Sci. 78, 545 (1978); I. NoorBatcha, R.R. Lucchhese, and Y. Zeiri, J. Chem. Phys. 86, 5816 (1987).

    Article  ADS  Google Scholar 

  12. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids (oxford University, Oxford, 1959). For a review of heat flow calculations see: P. Baeri and S.V. Campisano, in Laser Annealing of Semiconductors, ed. by J.M. Poate and J.W. Mayer (Academic Press, New York, 1982) pp 75–109.

    Google Scholar 

  13. Handbook of Optical Constants of Solids, Ed. Edward D. Palik (Academic Press, Inc, New York, 1985) pp. 409–427.

    Google Scholar 

  14. G.A. Slack, and S. Galginaitis, Phys. Rev. 133, A253 (1964); C.M. Bhandari and D.M. Rowe, Thermal Conduction in Semiconductors (John Wiley & Sons, New York, 1988).

    Article  ADS  Google Scholar 

  15. B. Strizker, A. Pospieszczyk, and J.A. Tagle, Phys. Rev. Lett. 47, 356 (1981), A. Pospieszczyk, M.A. Harith, and B. Strizker, J. Appl. Phys. 54, 3176 (1983).

    Article  ADS  Google Scholar 

  16. A. Namiki, T. Kawai, Y. Yasuda, and T. Nakamura, Jpn. J. Appl. Phys. 24, 270 (1985).

    Article  ADS  Google Scholar 

  17. J.M. Arias and G. Sullivan, J. Vac. Sci. Technol. A5, 3143 (1987); J.J. Dubowski, J.M. Wrobel, and D.F. Williams, Appl. Phys. Lett. 53, 660 (1988).

    ADS  Google Scholar 

  18. J.J. Zinck, P.D. Brewer, and G.L. Olson, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John C. Miller Richard F. Haglund Jr.

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Brewer, P.D., Zinck, J.J., Olson, G.L. (1991). Excimer laser ablation of CdTe. In: Miller, J.C., Haglund, R.F. (eds) Laser Ablation Mechanisms and Applications. Lecture Notes in Physics, vol 389. Springer, New York, NY. https://doi.org/10.1007/BFb0048358

Download citation

  • DOI: https://doi.org/10.1007/BFb0048358

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97731-7

  • Online ISBN: 978-0-387-34818-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics