Skip to main content

Depolarization — Transcription coupling in excitable cells

  • Chapter
  • First Online:
Book cover Reviews of Physiology Biochemistry and Pharmacology, Volume 127

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 127))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler EM, Fink JS (1993) Calcium regulation of vasoactive intestinal polypeptide mRNA abundance in SH-SY5Y human neuroblastoma cells. J Neurochem 61: 727–737

    CAS  PubMed  Google Scholar 

  • Axelsson J, Thesleff S (1959) A study of supersensitivity in denervated mammalian skeletal muscle. J Physiol (Lond) 147: 178–193

    CAS  PubMed  Google Scholar 

  • Bading H, Greenberg M (1991) Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253: 912–914

    CAS  PubMed  Google Scholar 

  • Bading H, Ginty DD, Greenberg ME (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260: 181–186

    CAS  PubMed  Google Scholar 

  • Baraban JM, Fiore RS, Sanghera JS, Paddon HB, Pelech SL (1993) Identification of p42 mitogen-activated protein kinase as a tyrosine kinase substrate activated by maximal electroconvulsive shock in hippocampus. J Neurochem 60: 330–336

    CAS  PubMed  Google Scholar 

  • Bartel DP, Sheng M, Lau LF, Greenberg ME (1989) Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction. Genes Dev 3: 304–313

    CAS  PubMed  Google Scholar 

  • Bessereau JL, Stratford-Perricaudet LD, Piette J, LePoupon C, Changeux J-P (1994) In vivo and in vitro analysis of electrical activity-dependent expression of muscle acetylcholine receptor genes using adenovirus. Proc Natl Acad Sci USA 91: 1304–1308

    CAS  PubMed  Google Scholar 

  • Bessho Y, Nawa H, Nakanishi S (1994) Selective up-regulation of an NMDA receptor subunit mRNA in cultured cerebellar granule cells by K+-induced depolarization and NMDA treatment. Neuron 12: 87–95

    Article  CAS  PubMed  Google Scholar 

  • Betz H (1980) Effects of drug-induced paralysis and depolarization on acetylchopline receptor and cyclic nucleotide levels of chick muscle cultures. FEBS Lett 118: 289–292

    Article  CAS  PubMed  Google Scholar 

  • Betz H, Changeux J-P (1979) Regulation of muscle acetylcholine receptor synthesis in vitro by derivatives of cyclic nucleotides. Nature 278: 749–752

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum M, Reis MA, Shainberg A (1980) Role of calcium in the regulation of acetylcholine receptor synthesis in cultured muscle cells. Eur J Physiol 385: 37–43

    CAS  Google Scholar 

  • Birren SJ, Verdi JM, Anderson DJ (1992) Membrane depolarization induces p140trk and NGF responsiveness, but not p75LNGFR, in MAH cells. Science 257: 395–397

    CAS  PubMed  Google Scholar 

  • Black IB, Adler JE, Dreyfus CF, Friedman WF, LaGamma EF, Roach A (1987) Biochemistry of information storage in the nervous system. Science 236: 1263–1268

    CAS  PubMed  Google Scholar 

  • Blackwell TK, Weintraub (1990) Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250: 1104–1110

    CAS  PubMed  Google Scholar 

  • Brand SJ, Wang TC (1988) Gastrin gene expression and regulation in rat islet cell lines. J Biol Chem 263: 16597–16603

    CAS  PubMed  Google Scholar 

  • Brockes JP, Hall ZW (1975) Synthesis of acetylcholine receptor by denervated rat diaphragm. Proc Natl Acad Sci USA 72: 1368–1372

    CAS  PubMed  Google Scholar 

  • Brunetti A, Goldfine ID (1990) Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J Biol Chem 265: 5960–5963

    CAS  PubMed  Google Scholar 

  • Buonanno A, Edmondson DG, Hayes WP (1993) Upstream sequences of the myogenin gene convey responsiveness to skeletal muscle denervation in transgenic mice. Nucleic Acids Res 21: 5684–5693

    CAS  PubMed  Google Scholar 

  • Bursztajn S, Schneider LW, Jong YJ, Berman SA (1988) Phorbol esters inhibit synthesis of acetylcholine receptors in cultured muscle cells. Biol Cell 63: 57–65

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (1991) Excitation-contraction coupling in vertebrate skeletal muscle: a tale of two calcium channels. Cell 64: 871–874

    Article  CAS  PubMed  Google Scholar 

  • Chahine KG, Walke W, Goldman D (1992) A 102-basepair sequence of the nicotinic acetylcholine receptor δ-subunit gene confers regulation by muscle electrical activity. Development 115: 213–219

    CAS  PubMed  Google Scholar 

  • Chahine KG, Baracchini E, Goldman D (1993) Coupling muscle electrical activity to gene expression via a cAMP-dependent second messenger system. J Biol Chem 268: 2893–2898

    CAS  PubMed  Google Scholar 

  • Cohen SA, Fischbach GD (1973) Regulation of muscle acetylcholine sensitivity by muscle activity in cell culture. Science 181: 76–78

    CAS  PubMed  Google Scholar 

  • Comb MC, Birnberg NC, Seasholtz A, Herbert E, Goodman HM (1986) A cyclic AMP-and phorbol ester-inducible DNA element. Nature 323: 353–356

    Article  CAS  PubMed  Google Scholar 

  • Constantine-Paton M, Cline HT, Debski E (1990) Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu Rev Neurosci 13: 129–154

    Article  CAS  PubMed  Google Scholar 

  • Covault J, Merlie JP, Goridis C, Sanes JR (1986) Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle. J Cell Biol 102: 731–738

    CAS  PubMed  Google Scholar 

  • Curran T, Morgan JI (1987) Memories of fos. Bioessays 7: 255–258

    Article  CAS  PubMed  Google Scholar 

  • Curran T, Morgan JI (1985) Superinduction of c-fos by NGF in the presence of peripherally active benzodiazepines. Science 229: 1265–1268

    CAS  PubMed  Google Scholar 

  • Curran T, Morgan JI (1986) Barium modulates c-fos expression and post-translational modification. Proc Natl Acad Sci USA 83: 8521–8524

    CAS  PubMed  Google Scholar 

  • Dash PK, Karl KA, Colicos MA, Prywes R, Kandel EB (1991) cAMP response element binding protein is activated by Ca2+/calmodulin as well as cAMP-dependent protein kinase. Proc Natl Acad Sci USA 88: 5061–5065

    CAS  PubMed  Google Scholar 

  • Devillers-Thiery A, Galzi JL, Eisele JL, Bertrand S, Bertrand D, Changeux J-P (1993) Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J Membrane Biol 136: 97–112

    CAS  Google Scholar 

  • Drachman DB, Witzke F (1972) Trophic regulation of acetylcholine sensitivity of muscle: effect of electrical stimulation. Science 176: 514–516

    CAS  PubMed  Google Scholar 

  • Dragunow M, Robertson HA (1987) Kindling stimulation induces c-fos protein in granule cells of the rat dentate gyrus. Nature 329: 441–442

    Article  CAS  PubMed  Google Scholar 

  • Duclert A, Piette J, Changeux J-P (1990) Induction of acetylcholine receptor α-subunit gene expression in chicken myotubes by blocking electrical activity requires ongoing protein synthesis. Proc Natl Acad Sci USA 87: 1391–1395

    CAS  PubMed  Google Scholar 

  • Duclert A, Piette J, Changeux J-P (1991) Influence of innervation on myogenic factors and acetylcholine receptor α-subunit mRNAs. NeuroReport 2: 25–28

    CAS  PubMed  Google Scholar 

  • Dutton EK, Simon AM, Burden SJ (1993) Electrical activity-dependent regulation of the acetylcholine receptor δ subunit gene, MyoD, and myogenin in primary myotubes. Proc Natl Acad Sci USA 90: 2040–2044

    CAS  PubMed  Google Scholar 

  • Edmondson DG, Olson E (1993) Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem 268: 755–758

    CAS  PubMed  Google Scholar 

  • Eftimie R, Brenner HR, Buonanno A (1991) Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci USA 88: 1349–1353

    CAS  PubMed  Google Scholar 

  • Evans S, Goldman D, Heinemann S, Patrick J (1987) Muscle acetylcholine receptor biosynthesis. Regulation by transcript availability. J Biol Chem 262: 4911–4916

    CAS  PubMed  Google Scholar 

  • Fambrough DM (1970) Acetylcholine sensitivity of muscle fiber membranes: mechanism of regulation by motoneurons. Science 168: 372–373

    CAS  PubMed  Google Scholar 

  • Fambrough DM (1979) Control of acetylcholine receptors in skeletal muscle. Physiol Rev 59: 165–266

    CAS  PubMed  Google Scholar 

  • Feldblum S, Ackerman RF, Tobin AJ (1990) Long-term increase of glutamate decarboxylase mRNA in a rat model of temporal lobe epilepsy. Neuron 5: 361–371

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Valle C, Rotundo RL (1989) Regulation of acetylcholinesterase synthesis and assembly by muscle activity: effects of tetrodotoxin. J Biol Chem 264: 14043–14049

    CAS  PubMed  Google Scholar 

  • Funk WD, Wright WE (1992) Cyclic amplification and selection of targets for multicomponent complexes: myogenin interacts with factors recognizing binding sites for basic helix-loop-helix, nuclear factor 1, myocyte-specific enhancer-binding factor 2, and COMP1 factor. Proc Natl Acad Sci USA 89: 9484–9488

    CAS  PubMed  Google Scholar 

  • Gall C, Sumikawa K, Lynch G (1990) Levels of mRNA for a putative kainate receptor are affected by seizures. Proc Natl Acad Sci USA 87: 7643–7647

    CAS  PubMed  Google Scholar 

  • Gass P, Kiessling M, Bading H (1993) Regionally selective stimulation of mitogen activated protein (MAP) kinase tyrosine phosphorylation after generalized seizures in the rat brain. Neurosci Lett 162: 39–42

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Carnahan J, Greenberg ME (1994a) Requirement for BDNF in activity-depedent survival of cortical neurons. Science 263: 1618–1623

    CAS  PubMed  Google Scholar 

  • Ghosh A, Ginty DD, Bading H, Greenberg ME (1994b) Calcium regulation of gene expression in neuronal cells. J Neurobiol 25: 294–303

    Article  CAS  PubMed  Google Scholar 

  • Ginty DD, Bonni A, Greenberg ME (1994) Nerve growth factor activates a ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77: 1–20

    Article  Google Scholar 

  • Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and short of short-term memory — a molecular framework. Nature 322: 419–422

    Article  CAS  PubMed  Google Scholar 

  • Goldman D, Brenner HR, Heinemann S (1988) Acetylcholine receptor α, β-, γ-, and δ-subunit mRNA levels are regulated by muscle activity. Neuron 1: 329–333

    Article  CAS  PubMed  Google Scholar 

  • Goodman RH (1990) Regulation of neuropeptide gene expression. Annu Rev Neurosci 13: 111–127

    Article  CAS  PubMed  Google Scholar 

  • Greenberg ME, Ziff EB (1984) Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311: 433–438

    Article  CAS  PubMed  Google Scholar 

  • Greenberg ME, Greene LA, Ziff EB (1985) Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogene transcription in PC12 cells. J Biol Chem 260: 14101–14110

    CAS  PubMed  Google Scholar 

  • Greenberg ME, Ziff EB, Greene LA (1986) Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234: 80–83

    CAS  PubMed  Google Scholar 

  • Greenberg ME, Thompson MA, Sheng M (1992) Calcium regulation of immediate early gene transcription. J Physiol (Paris) 86:99–108

    CAS  Google Scholar 

  • Griffith LC, Schulman H (1988) The multifunctional calcium/calmodulin-dependent protein kinase mediates calcium-dependent phosphorylation of tyrosine hydroxylase. J Biol Chem 263: 9542–9549

    CAS  PubMed  Google Scholar 

  • Gruener R, Baumbach N, Coffee D (1974) Reduction of denervation sensitivity of muscle by submechanical threshold stimulation. Nature 248: 68–69

    Article  CAS  PubMed  Google Scholar 

  • Gundersen K, Sanes JR, Merlie JP (1993) Neural regulation of muscle acetylcholine receptor ε-and α-subunit gene promoters in transgenic mice. J Cell Biol 123: 1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Hall ZW, Reinness CG (1977) Electrical stimulation of denervated muscles reduces incorporation of methionine into acetylcholine receptor. Nature 268: 655–657

    CAS  PubMed  Google Scholar 

  • Hall ZW, Sanes JR (1993) Synaptic structure and development: the neuromuscular junction. Neuron 10: 99S–121S

    Article  Google Scholar 

  • Harris DA, Falls DL, Dill-Devor RM, Fischbach GD (1988) Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor α subunit. Proc Natl Acad Sci USA 85: 1983–1987

    CAS  PubMed  Google Scholar 

  • Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364: 501–506

    Article  CAS  PubMed  Google Scholar 

  • Higuchi H, Iwasa A, Yoshida H, Miki N (1990) Long-lasting increase in neuropeptide Y gene expression in rat adrenal gland with reserpine treatment: positive regulation of transsynaptic regulation and membrane depolarization. Mol Pharmacol 38: 614–623

    CAS  PubMed  Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer, Sunderland, pp 1–426

    Google Scholar 

  • Hogan PG, Marshall JM, Hall ZW (1976) Muscle activity decreases rate of degradation of α-bungarotoxin bound to extrajunctional receptors. Nature 261: 328–330

    Article  CAS  PubMed  Google Scholar 

  • Huang C-F, Schmidt J (1994) Calcium influx blocks the skeletal muscle acetylcholine receptor α subunit genes in vivo. FEBS Lett 338: 277–280

    Article  CAS  PubMed  Google Scholar 

  • Huang C-F, Tong J, Schmidt J (1992) Protein kinase C couples excitation to acetylcholine receptor gene inactivation in chick skeletal msucle. Neuron 9: 671–678

    Article  CAS  PubMed  Google Scholar 

  • Huang C-F, Neville CM, Schmidt J (1993) Control of myogenic factor genes by the membrane depolarization/protein kinase C cascade in chick skeletal muscle. FEBS Lett 319: 21–25

    CAS  PubMed  Google Scholar 

  • Huang C-F, Flucher BE, Schmidt MM, Stroud SK, Schmidt J (1994a) Depolarization-transcription signals in skeletal muscle use calcium flux through L channels, but bypass the sarcoplasmic reticulum. Neuron 13: 167–177

    Article  CAS  PubMed  Google Scholar 

  • Huang C-F, Lee Y-S, Schmidt M, Schmidt J (1994b) Rapid inhibition of myogenin-driven acetylcholine receptor subunit gene transcription. EMBO J 13: 634–640

    CAS  PubMed  Google Scholar 

  • Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328: 632–634

    Article  CAS  PubMed  Google Scholar 

  • Isackson PJ, Huntsman MM, Murray KD, Gall CM (1991) BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 6: 937–948

    Article  CAS  PubMed  Google Scholar 

  • Jones R, Vrbová G (1974) Two factors responsible for the development of denervation supersensitivity. J Physiol (Lond) 236: 517–538

    CAS  PubMed  Google Scholar 

  • Kilbourne EJ, Nanlova BB, Lewis EJ, McMahon A, Osaka H, Sabban DB, Sabban EL (1992) Regulated expression of the tyrosine hydroxylase gene by membrane depolarization. Identification of the responsive element and possible second messengers. J Biol Chem 267: 7563–7569

    CAS  PubMed  Google Scholar 

  • Kim K-S, Lee MK, Carroll J, Joh TH (1993) Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element. J Biol Chem 268: 15689–15695

    CAS  PubMed  Google Scholar 

  • Klarsfeld A, Changeux J-P (1985) Activity regulates the levels of acetylcholine receptor α-subunit mRNA in cultured chicken myotubes. Proc Natl Acad Sci USA 82: 4558–4562

    CAS  PubMed  Google Scholar 

  • Klarsfeld A, Laufer R, Fontaine B, Devillers-Thiery A, Dubreuil C, Changeux J-P (1989) Regulation of muscle AChR α-subunit gene expression by electrical activity: involvement of protein kinase C and Ca2+. Neuron 2: 1229–1236

    Article  CAS  PubMed  Google Scholar 

  • Kruijer W, Schubert D, Verma IM (1985) Induction of the proto-oncogene fos by nerve growth factor. Proc Natl Acad Sci USA 82:7330–7334

    CAS  PubMed  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764

    CAS  PubMed  Google Scholar 

  • Laufer R, Changeux J-P (1989) Activity-dependent regulation of gene expression in muscle and neuronal cells. Mol Neurobiol 3: 1–53

    CAS  PubMed  Google Scholar 

  • Laufer R, Klarsfeld A, Changeux J-P (1991) Phorbol esters inhibit the activity of the chicken acetylcholine receptor α-subunit gene promoter. Eur J Biochem 202: 813–818

    Article  CAS  PubMed  Google Scholar 

  • Law SW, Conneely OM, DeMayo FJ, O'Malley BW (1992) Identification of a new brain-specific transcription factor, NURR1. Mol Endocrinol 6: 2129–2135

    Article  CAS  PubMed  Google Scholar 

  • Lerea LS, McNamara JO (1993) Ionotropic glutamate receptor subtypes activate c-fos transcription by distinct calcium-requiring intracellular signaling pathways. Neuron 10: 31–41

    Article  CAS  PubMed  Google Scholar 

  • Li L, Heller-Harrison R, Czech M, Olson EN (1992a) Cyclic AMP-dependent protein kinase inhibits the activity of myogenic helix-loop-helix proteins. Mol Cell Biol 12: 4478–4485

    CAS  PubMed  Google Scholar 

  • Li L, Zhou J, James G, Heller-Harrison R, Czech MP, Olson EN (1992b) FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA binding domain. Cell 71: 1181–1194

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Thompson MA, Wagner S, Greenberg ME, Green MR (1993) Activating transcription factor-1 can mediate Ca2+-and cAMP-inducible transcriptional activation. J Biol Chem 268: 6714–6720

    CAS  PubMed  Google Scholar 

  • Lømo T, Rosenthal J (1972) Control of ACh sensitivity by muscle activity in the rat. J Physiol (Lond) 221: 493–513

    PubMed  Google Scholar 

  • Lømo T, Westgaard RH (1975) Further studies on the control of acetylcholine sensitivity by muscle activity in the rat. J Physiol (Lond) 252: 603–626

    PubMed  Google Scholar 

  • Lu B, Yokoyama M, Dreyfus CF, Black IB (1991) Depolarizing stimuli regulate nerve growth factor gene expression in cultured hippocampal neurons. Proc Natl Acad Sci USA 88: 6289–6292

    CAS  PubMed  Google Scholar 

  • Ma PCM, Rould MA, Weintraub H, Pabo CO (1994) Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcription activation. Cell 77: 451–459

    Article  CAS  PubMed  Google Scholar 

  • McArthur L, Koller KJ, Eiden LE (1993) Enkephalin gene transcription in bovine chromaffine cells is regulated by calcium and protein kinase A signal transduction pathways: identification of DNAse I hypersensitive sites. Mol Pharmacol 44: 545–551

    Google Scholar 

  • McManaman JL, Blosser JC, Appel SH (1982) Inhibitors of membrane depolarization regulate acetylcholine receptor synthesis by a calcium-dependent, cyclic nucleotide-independent mechanism. Biochim Biophys Acta 720: 28–35

    CAS  PubMed  Google Scholar 

  • Mendelzon D, Changeux J-P, Nghiem H-O (1994) Phosphorylation of myogenin in chick myotubes: regulation by electrical activity and by protein kinase C. Implications for acetylcholine receptor gene expression. Biochemistry 33: 2568–2575

    Article  CAS  PubMed  Google Scholar 

  • Merlie JP, Kornhauser JM (1989) Neural regulation of gene expression by an acetylcholine receptor promoter in muscle of transgenic mice. Neuron 2: 1295–1300

    Article  CAS  PubMed  Google Scholar 

  • Merlie JP, Isenberg KE, Russell SD, Sanes JR (1984) Denervation supersensitivity in skeletal muscle: analysis with a cloned cDNA probe. J Cell Biol 99: 332–335

    Article  CAS  PubMed  Google Scholar 

  • Merlie JP, Mudd J, Cheng T-C, Olson EN (1994) Myogenin and acetylcholine receptor α gene promoters mediate transcriptional regulation in response to motor innervation. J Biol Chem 269: 2461–2467

    CAS  PubMed  Google Scholar 

  • Messing RO, Stevens AM, Kiyasu E, Sneade AB (1989) Nicotinic and muscarinic agonists stimulate rapid protein kinase C translocation in PC12 cells. J Neurosci 9: 507–512

    CAS  PubMed  Google Scholar 

  • Miledi R, Potter LT (1971) Acetylcholine receptors in muscle fibers. Nature 233: 599–600

    Article  CAS  PubMed  Google Scholar 

  • Miskin R, Easton TG, Maelicke A, Reich E (1978) Metabolism of acetylcholine receptor in chick embryo muscle cells: effects of RSV and PMA. Cell 15: 1287–1300

    CAS  PubMed  Google Scholar 

  • Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic AMP response element of the somatostatin gene. Nature 328: 175–178

    Article  CAS  PubMed  Google Scholar 

  • Montminy MR, Sevarino KA, Wagner JA, Mandel G, Goodman RH (1986) Identification of cAMP response element within the rat somatostatin gene. Proc Natl Acad Sci USA 83: 6682–6686

    CAS  PubMed  Google Scholar 

  • Morgan JI, Curran T (1986) Role of ion flux in the control of c-fos expression. Nature 322: 552–555

    Article  CAS  PubMed  Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14: 421–451

    Article  CAS  PubMed  Google Scholar 

  • Morgan JJ, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237: 192–197

    CAS  PubMed  Google Scholar 

  • Morris BJ, Feasey KJ, Bruggencate GT, Herz A, Hoellt V (1988) Electrical stimulation in vivo increases the expression of proenkephalin mRNA and decreases the expression of prodynorphin mRNA in rat hippocampal granule cells. Proc Natl Acad Sci USA 85: 3226–3230

    CAS  PubMed  Google Scholar 

  • Moss SJ, Beeson DMW, Jackson JF, Darlison MG, Barnard EA (1987) Differential expression of nicotinic acetylcholine receptor genes in innervated and denervated chicken muscle. EMBO J 6: 3917–3921

    CAS  PubMed  Google Scholar 

  • Müller R, Bravo R, Burckhardt J, Curran T (1984) Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 312: 716–720

    Article  PubMed  Google Scholar 

  • Mundiña-Weilenmann C, Chang CF, Gutierrez LM, Hosey MM (1991) Demonstration of the phosphorylation of dihydropyridine-sensitive calcium channels in chick skeletal muscle and the resultant activation of the channel after reconstitution. J Biol Chem 266: 4067–4073

    PubMed  Google Scholar 

  • Murphy TH, Worley PF, Baraban JM (1991) L-type voltage-sensitive calcium channels mediate synaptic activation of immediate-early genes. Neuron 7: 625–635

    Article  CAS  PubMed  Google Scholar 

  • Neville CM, Schmidt MM, Schmidt J (1991) Kinetics of expression of ACh receptor α-subunit mRNA in denervated and stimulated muscle. NeuroReport 2: 655–657

    CAS  PubMed  Google Scholar 

  • Neville CM, Schmidt MM, Schmidt J (1992) Response of myogenic determination factors to cessation and resumption of electrical activity in skeletal muscle. Cell Mol Neurobiol 12: 511–527

    Article  CAS  PubMed  Google Scholar 

  • Pette D, Vrbová G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120: 115–202

    CAS  PubMed  Google Scholar 

  • Pezzementi L, Schmidt J (1981) Ryanodine alters the rate of acetylcholine receptor synthesis in chick skeletal muscle cell cultures. J Biol Chem 256: 12651–12654

    CAS  PubMed  Google Scholar 

  • Purves D (1976) Long-term regulation in the vertebrate peripheral nervous system. Int Rev Physiol 10: 125–177

    CAS  Google Scholar 

  • Qian Z, Gilbert ME, Colicos MA, Kandel ER, Kuhl D (1993) Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling, and long-term potentiation. Nature 361: 453–457

    CAS  PubMed  Google Scholar 

  • Robertson LM, Kerppola TK, Vendrell M, Luk D, Smeyne RJ, Bocchiaro C, Morgan JI, Curran T (1995) Regulation of c-fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron 14: 241–252

    Article  CAS  PubMed  Google Scholar 

  • Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP (1993) Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 11: 645–655

    Article  CAS  PubMed  Google Scholar 

  • Rosen LB, Ginty DD, Weber MJ, Greenberg ME (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of ras. Neuron 12: 1207–1221

    Article  CAS  PubMed  Google Scholar 

  • Rotzler S, Schramek H, Brenner HR (1991) Metabolic stabilization of endplate acetylcholine receptors regulated by calcium influx associated with muscle activity. Nature 349: 337–339

    Article  CAS  PubMed  Google Scholar 

  • Saffen DW, Cole AJ, Worley PF, Christy BA, Ryder K, Baraban JM (1988) Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proc Natl Acad Sci USA 85: 7795–7799

    CAS  PubMed  Google Scholar 

  • Salmon A-M, Changeux J-P (1992) Regulation of an acetylcholine receptor lacZ transgene by muscle innervation. NeuroReport 3: 973–976

    CAS  PubMed  Google Scholar 

  • Salpeter MM, Loring RH (1985) Nicotinic acetylcholine receptors in vertebrate muscle: properties, distribution, and neural control. Progr Neurobiol 25: 297–325

    Article  CAS  PubMed  Google Scholar 

  • Sanes JR, Johnson YR, Kotzbauer PT, Mudd J, Hanley T, Martinou J-C, Merlie JP (1991) Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers. Development 113: 1181–1191

    CAS  PubMed  Google Scholar 

  • Sculptoreanu A, Scheuer T, Catterall WA (1993) Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature 364: 240–243

    Article  CAS  PubMed  Google Scholar 

  • Shainberg A, Cohen SA, Nelson PG (1976) Induction of acetylcholine receptors in muscle cultures. Pflugers Arch 361: 255–261

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4: 477–485

    CAS  PubMed  Google Scholar 

  • Sheng M, Dougan ST, McFadden G, Greenberg ME (1988) Calcium and growth factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences. Mol Cell Biol 8: 2787–2796

    CAS  PubMed  Google Scholar 

  • Sheng M, McFadden G, Greenberg ME (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4: 571–582

    CAS  PubMed  Google Scholar 

  • Sheng M, Thompson MA, Greenberg ME (1991) CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252: 1427–1430

    CAS  PubMed  Google Scholar 

  • Shieh B-H, Ballivet M, Schmidt J (1987) Quantitation of an a-subunit splicing intermediate. Evidence for transcriptional activation in the control of receptor expression in denervated chick skeletal muscle. J Cell Biol 104: 1337–1341

    Article  CAS  PubMed  Google Scholar 

  • Shieh B-H, Ballivet M, Schmidt J (1988) Acetylcholine receptor synthesis rate and levels of receptor subunit mRNAs in chick muscle. Neuroscience 24: 175–187

    Article  CAS  PubMed  Google Scholar 

  • Simon AM, Hoppe P, Burden SJ (1992) Spatial restriction of acetylcholine receptor gene expression to subsynaptic nuclei. Development 114: 545–553

    CAS  PubMed  Google Scholar 

  • Smeyne RJ, Schilling K, Robertson L, Luk D, Oberdick J, Curran T, Morgan JI (1992) Fos-lacZ transgenic mice: mapping sites of gene induction in the central nervous system. Neuron 8: 13–23

    Article  CAS  PubMed  Google Scholar 

  • Smeyne RJ, Vendrell M, Hayward M, Baker SJ, Miao GG, Schilling K, Robertson LM, Curran T, Morgan JI (1993) Continuous c-fos expression precedes programmed cell death in vivo. Nature 363: 166–169

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg JL, Macgregor-Leon PF, Curran T, Morgan JI (1989a) Dynamic alterations occur in the levels and composition of transcription factor API complexes after seizure. Neuron 3: 359–365

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg JL, Mitchelmore C, Macgregor-Leon PF, Hepstead J, Morgan JI, Curran T (1989b) Glutamate receptor agonists increase the expression of fos, fra, and AP-1 DNA binding in the mammalian brain. J Neurosci Res 24: 72–80

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg JL, Rauscher FJ, Morgan JI, Curran T (1989c) Regulation of proenkephalin by Fos and Jun. Science 246: 1622–1625

    CAS  PubMed  Google Scholar 

  • Strohman RC, Bandman E, Walker CR (1981) Regulation of myosin accumulation by muscle activity in cell culture. J Muscle Res Cell Motil 2: 269–282

    Article  CAS  PubMed  Google Scholar 

  • Thomas SM, DeMarco M, D'Arcangelo G, Halegoua S, Brugge JS (1992) Ras is essential for nerve growth factor-and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68: 1031–1040

    CAS  PubMed  Google Scholar 

  • Treisman R (1985) Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences. Cell 42: 889–902

    Article  CAS  PubMed  Google Scholar 

  • Tsaur M-L, Sheng M, Lowenstein DH, Jan YN, Jan LY (1992) Differential expression of K+ channel mRNAs in the rat brain and down-regulation in the hippocampus following seizures. Neuron 8: 1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Tsay H-J, Schmidt J (1989) Skeletal muscle denervation activates acetylcholine receptor genes. J Cell Biol 108: 1523–1526

    Article  CAS  PubMed  Google Scholar 

  • Tsay H-J, Neville CM, Schmidt J (1990) Protein synthesis is required for the denervation-triggered activation of acetylcholine receptor genes. FEBS Lett 274: 69–72

    Article  CAS  PubMed  Google Scholar 

  • Tsukuda T, Fink JS, Mandel G, Goodman RH (1987) Identification of a region in the human vasoactive intestinal polypeptide gene responsible for regulation by cyclic AMP. J Biol Chem 262: 8743–8747

    Google Scholar 

  • Walke W, Staple J, Adams L, Gnegy M, Chahine K, Goldman D (1994) Calcium-dependent regulation of rat and chick muscle nicotinic acetylcholine receptor gene expression. J Biol Chem 269: 19447–19456

    CAS  PubMed  Google Scholar 

  • Watson MA, Milbrandt J (1989) The NGFI-B gene, a transcriptionally inducible member of the steroid receptor gene superfamily: genomic structure and expression in rat brain after seizure. Mol Cell Biol 9: 4213–4219

    CAS  PubMed  Google Scholar 

  • Weintraub H (1993) The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75: 1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, Zhuang Y, Lassar A (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251: 761–766

    CAS  PubMed  Google Scholar 

  • Weis J (1994) Jun, Fos, MyoD1, and myogenin proteins are increased in skeletal muscle fiber nuclei after denervation. Acta Neuropathol 87: 63–70

    CAS  PubMed  Google Scholar 

  • Westenbroek RE, Ahlijanian MK, Catterall WA (1990) Clustering of L-type calcium channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 366: 433–438

    Google Scholar 

  • Wisden W, Errington ML, Williams S, Dunnett SB, Waters C, Hitchcock D, Evan G, Bliss TVP, Hunt SP (1990) Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4: 603–614

    Article  CAS  PubMed  Google Scholar 

  • Witzemann V, Sakmann B (1991) Differential regulation of MyoD and myogenin mRNA levels by nerve-induced muscle activity. FEBS Lett 282: 259–264

    Article  CAS  PubMed  Google Scholar 

  • Witzemann V, Brenner H-R, Sakmann B (1991) Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses. J Cell Biol 114: 125–141

    Article  CAS  PubMed  Google Scholar 

  • Wright WE, Binder M, Funk W (1991) Cyclic amplification and selection of targets (CASTing) for myogenin consensus binding site. Mol Cell Biol 11: 4104–4110

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Schmidt, J. (1995). Depolarization — Transcription coupling in excitable cells. In: Reviews of Physiology Biochemistry and Pharmacology, Volume 127. Reviews of Physiology, Biochemistry and Pharmacology, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0048269

Download citation

  • DOI: https://doi.org/10.1007/BFb0048269

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60135-7

  • Online ISBN: 978-3-540-49453-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics