Skip to main content

Chemistry and pathophysiology of oxidation of LDL

  • Chapter
  • First Online:
Reviews of Physiology Biochemistry and Pharmacology, Volume 127

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 127))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autio I, Jaakkola O, Solakivi T, Nikkari T (1990) Oxidized low-density lipoprotein is chemotactic for arterial smooth muscle cells in culture. FEBS Lett 277: 247–249

    Article  CAS  PubMed  Google Scholar 

  • Aviram M (1992) Low density lipoprotein modification by cholesterol oxidase induces enhanced uptake and cholesterol accumulation in cells. J Biol Chem 267: 218–225

    CAS  PubMed  Google Scholar 

  • Aviram M (1993) Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis 98: 1–9

    Article  CAS  PubMed  Google Scholar 

  • Balla G, Jacob HS, Eaton JW, Belcher JD, Vercellotti GM (1991) Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler Thromb 11: 1700–1711

    CAS  PubMed  Google Scholar 

  • Barenghi L, Bradamante S, Giudici GA, Vergani C (1990) NMR analysis of low-density lipoprotein oxidatively modified in vitro. Free Radic Res Commun 8: 175–183

    CAS  PubMed  Google Scholar 

  • Belkner J, Wiesner R, Kühn H, Lankin VZ (1991) The oxygenation of cholesterol esters by the reticulocyte lipoxygenase. FEBS Lett 279: 110–114

    Article  CAS  PubMed  Google Scholar 

  • Belkner J, Wiesner R, Rathman J, Barnett J, Sigal E, Kühn H (1993) Oxygenation of lipoproteins by mammalian lipoxygenase. Eur J Biochem 213: 251–261

    CAS  PubMed  Google Scholar 

  • Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Ramshad B, Esterson M, Fogelman AM (1990) Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 85: 1260–1266

    CAS  PubMed  Google Scholar 

  • Bhadra S, Arshad MAQ, Rymaszewski Z, Norman E, Wherley R, Subbiah MTR (1991) Oxidation of cholesterol moiety of low density lipoprotein in the presence of human endothelial cells or Cu+2 ions: identification of major products and their effects. Biochem Biophys Res Commun 176: 431–440

    Article  CAS  PubMed  Google Scholar 

  • Björkhem I, Henriksson-Freyschuss A, Breuer O, Diczfalusy U, Berglund L, Henriksson P (1991) The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler Thromb 11: 15–22

    PubMed  Google Scholar 

  • Bonnefont-Rousselot D, Gardès-Albert M, Delattre J, Ferradini C (1993) Oxidation of low-density lipoproteins by OH and OH/O −•2 free radicals produced by gamma radiolysis. Radiat Res 134: 271–282

    CAS  PubMed  Google Scholar 

  • Bowry VW, Stocker R (1993) Tocopherol-mediated peroxidation — the prooxidant effect of vitamin E on the radical initiated oxidation of human low-density lipoprotein. J Am Chem Soc 115: 6029–6044

    Article  CAS  Google Scholar 

  • Bowry VW, Stanley KK, Stocker R (1992) High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci USA 89: 10316–10320

    CAS  PubMed  Google Scholar 

  • Bruckdorfer KR (1990) Free radicals, lipid peroxidation and atherosclerosis. Curr Opin Lipidol 1: 529–535

    Google Scholar 

  • Camejo G, Lopez A, Lopez F, Quinones J (1985) Interaction of low density lipoproteins with arterial proteoglycans. The role of charge and sialic acid content. Atherosclerosis 55: 93

    Article  CAS  PubMed  Google Scholar 

  • Campos H, Blijlevens E, McNamara JR, Ordovas JM, Posner BM, Wilson PWF, Castelli WP, Schaffer EJ (1992) LDL particle size distribution. Arterioscler Thromb 12: 1410–1419

    CAS  PubMed  Google Scholar 

  • Carpenter KLH, Ballantine JA, Fussell B, Enright JH, Mitchinson MJ (1990) Oxidation of cholesteryl linoleate by human monocyte-macrophages in vitro. Atherosclerosis 83: 217–229

    Article  CAS  PubMed  Google Scholar 

  • Carpenter KLH, Brabbs CE, Mitchinson MJ (1991) Oxygen radicals and atherosclerosis. Klin Wochenschr 69: 1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Carpenter KLH, Taylor SE, Ballantine JA, Fussell B, Halliwell B, Mitchinson MJ (1993) Lipids and oxidised lipids in human atheroma and normal aorta. Biochim Biophys Acta 1167: 121–130

    CAS  PubMed  Google Scholar 

  • Carpenter KLH, Wilkins GM, Fussel B, Ballantine JA, Taylor SE, Mitchinson MJ, Leake DS (1994) Production of oxidized lipids during modification of low-density lipoprotein by macrophages or copper. Biochem J 304: 625–633

    CAS  PubMed  Google Scholar 

  • Cathcart MK, McNally AK, Chisolm GM (1991) Lipoxygenase-mediated transformation of human low density lipoprotein to an oxidized and cytotoxic complex. J Lipid Res 32: 63–70

    CAS  PubMed  Google Scholar 

  • Chait A, Heinecke JW (1994) Lipoprotein modification: cellular mechanisms. Curr Opin Lipidol 5: 365–370

    CAS  PubMed  Google Scholar 

  • Chevion M (1988) A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals. Free Radic Biol Med 5: 27–37

    Article  CAS  PubMed  Google Scholar 

  • Chisolm GM (1992) The oxidation of lipoproteins: implications for atherosclerosis. In: Spatz L, Bloom AD (eds) Biological consequences of oxidative stress. Implications for cardiovascular disease and carcinogenesis. Oxford University Press, New York, pp 78–106

    Google Scholar 

  • Cosgrove JP, Church DF, Pryor WA (1987) The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22: 299–304

    CAS  PubMed  Google Scholar 

  • Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schartz CJ, Fogelman AM (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 87: 5134–5138

    CAS  PubMed  Google Scholar 

  • Daret D, Blin P, Dorian B, Rigaud M, Larrue J (1993) Synthesis of monohydroxylated fatty acids from linoleic acid by rat aortic smooth muscle cells and tissues: influence on prostacyclin production. J Lipid Res 34: 1473–1482

    CAS  PubMed  Google Scholar 

  • De Graaf J, Hak-Lemmers HLM, Hectors MPC, Demacker PNM, Hendricks JCM, Stalenhoef AFH (1991) Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb 11: 298–306

    PubMed  Google Scholar 

  • Drake TA, Hannani K, Fei H, Lavi S, Berliner JA (1991) Minimally oxidized low-density lipoprotein induces tissue factor expression in cultured human endothelial cells. Am J Pathol 138: 601–607

    CAS  PubMed  Google Scholar 

  • Ehrenwald E, Chisolm GM, Fox PL (1994) Intact human ceruloplasmin oxidatively modifies low density lipoprotein. J Clin Invest 93: 1493–1501

    CAS  PubMed  Google Scholar 

  • El-Saadani M, Esterbauer H, El-Sayed M, Goher M, Nasser AY, Juergens G (1989) A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J Lipid Res 30: 627–630

    CAS  PubMed  Google Scholar 

  • Engelmann B, Bräutigam C, Thiery J (1994) Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem Biophys Res Commun 204: 1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Esterbauer H, Juergens G, Quehenberger O, Koller E (1987) Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 28: 495–509

    CAS  PubMed  Google Scholar 

  • Esterbauer H, Juergens G (1993) Mechanistic and genetic aspects of susceptibility of LDL to oxidation. Curr Opin Lipidol 4: 114–124

    CAS  Google Scholar 

  • Esterbauer H, Striegl G, Puhl H, Rotheneder M (1989) Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun 6: 67–75

    CAS  PubMed  Google Scholar 

  • Esterbauer H, Zollner H, Schaur R (1990) Aldehydes formed by lipid peroxidation: mechanism of formation, occurrence and determination. In: Pelfrey C (ed) Membrane lipid oxidation. CRC Press, Boca Raton, pp 239–268

    Google Scholar 

  • Esterbauer H, Gebicki J, Puhl H, Juergens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13: 341–390

    Article  CAS  PubMed  Google Scholar 

  • Folcik VA, Cathcart MK (1993) Assessment of 5-lipoxygenase involvement in human monocyte-mediated LDL oxidation. J Lipid Res 34: 69–79

    CAS  PubMed  Google Scholar 

  • Fox PL, Chisolm GM, DiCorleto PE (1987) Lipoprotein-mediated inhibition of endothelial cell production of platelet-derived growth factor-like protein depends on free radical lipid peroxidation. J Biol Chem 262: 6046–6054

    CAS  PubMed  Google Scholar 

  • Frankel EN, German JB, Davis PA (1992) Headspace gas chromatography to determine human low density lipoprotein oxidation. Lipids 27: 1047–1051

    CAS  PubMed  Google Scholar 

  • Frankel EN, Kanner J, German JB, Parks E, Kinsella JE (1993) Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341: 454–457

    CAS  PubMed  Google Scholar 

  • Frei B, Gaziano JM (1993) Content of antioxidants, preformed lipid hydroperoxides, and cholesterol as predictors of the susceptibility of human LDL to metal ion-dependent and-independent oxidation. J Lipid Res 34: 2135–2145

    CAS  PubMed  Google Scholar 

  • Frostegard J, Wu R, Giscombe R, Holm G, Lefvert AK, Nilsson J (1992) Induction of T-cell activation by oxidized low density lipoproteins. Arterioscler Thromb 12: 461–467

    CAS  PubMed  Google Scholar 

  • Fruebis J, Parthasarathy S, Steinberg D (1992) Evidence for a concerted reaction between lipid hydroperoxides and polypeptides. Proc Natl Acad Sci USA 89: 10588–10592

    CAS  PubMed  Google Scholar 

  • Gebicki J, Juergens G, Esterbauer H (1991) Oxidation of low density lipoprotein in vitro. In: Sies H (ed) Oxidative stress. Academic, London, pp 371–397

    Google Scholar 

  • Gieseg SP, Esterbauer H (1994) Low density lipoprotein is saturable by pro-oxidant copper. FEBS Lett 343: 188–194

    Article  CAS  PubMed  Google Scholar 

  • Graham A, Hogg N, Kalyanaraman B, O'Leary VJ, Darley-Usmar VM, Moncada S (1993) Peroxynitrite modification of low density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett 330: 181–185

    Article  CAS  PubMed  Google Scholar 

  • Haberland ME, Steinbrecher UP (1992) Modified low density lipoproteins: diversity and biological relevance in atherogenesis. In: Lusis AJ, Rotter JI, Sparks RS (eds) Molecular genetics of coronary artery disease. Candidate genes and processes in atherosclerosis. Monogr Hum Genet 14: 35–61

    CAS  Google Scholar 

  • Halliwell B (1993) The role of oxygen radicals in human disease, with particular reference to the vascular system. Haemostasis 23 [Suppl 1]: 118–126

    CAS  PubMed  Google Scholar 

  • Hamilton TA, Ma GP, Chisolm GM (1990) Oxidized low density lipoprotein suppresses the expression of tumor necrosis factor-alpha mRNA in stimulated murine peritoneal macrophages. J Immunol 144: 2343–2350

    CAS  PubMed  Google Scholar 

  • Hazell LJ, Van den Berg JJM, Stocker R (1994) Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem J 302: 297–304

    CAS  PubMed  Google Scholar 

  • Heinecke JW, Rosen H, Suzuki LA, Chait A (1987) The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. J Biol Chem 262:10098–10103

    CAS  PubMed  Google Scholar 

  • Heinecke JW, Kawamura M, Suzuki L, Chait A (1993) Oxidation of low density lipoprotein by thiols: superoxide-dependent and-independent mechanisms. J Lipid Res 34: 2051–2061

    CAS  PubMed  Google Scholar 

  • Hodis HN, Chauhan A, Hashimoto S, Crawford DW, Sevanian A (1992) Probucol reduces plasma and aortic wall oxysterol levels in cholesterol fed rabbits independently of its plasma cholesterol lowering effect. Atherosclerosis 96:125–134

    Article  CAS  PubMed  Google Scholar 

  • Hoff HF, Cole TB (1991) Macrophage uptake of low-density lipoprotein modified by 4-hydroxynonenal. Lab Invest 64: 254–264

    CAS  PubMed  Google Scholar 

  • Hoff HF, O'Neil J (1993) Structural and functional changes in LDL after modification with both 4-hydroxynonenal and malondialdehyde. J Lipid Res 34: 1209–1217

    CAS  PubMed  Google Scholar 

  • Hoff HF, O'Neill J, Chisolm GM, Cole TB, Quehenberger O, Esterbauer H, Juergens G (1989) Modification of LDL with 4-hydroxynonenal, a propagation product of lipid peroxidation, induces uptake of LDL by macrophages. Arteriosclerosis 9: 538–549

    CAS  PubMed  Google Scholar 

  • Jessup W, Juergens G, Lang J, Esterbauer H, Dean RT (1986) The interaction of 4-hydroxynonenal-modified low density lipoproteins with the fibroblast apo B/E receptor. Biochem J 234: 245–248

    CAS  PubMed  Google Scholar 

  • Jessup W, Rankin SM, De Whalley CV, Hoult JRS, Scott J, Leake DS (1990) α-Tocopherol consumption during low-density lipoprotein oxidation. Biochem J 265: 399–405

    CAS  PubMed  Google Scholar 

  • Jessup W, Darley-Usmar V, O'Leary V, Bedwell S (1991) 5-Lipoxygenase is not essential in macrophage-mediated oxidation of low-density lipoprotein. Biochem J 278: 163–169

    CAS  PubMed  Google Scholar 

  • Jougasaki M, Kugiyama K, Saito Y, Nakao K, Imura H, Yasue H (1992) Suppression of endothelin-1 secretion by lysophosphatidyl choline in oxidized low density lipoprotein in cultured vascular endothelial cells. Circ Res 71: 614–619

    CAS  PubMed  Google Scholar 

  • Juergens G, Hoff HF, Chisolm GM, Esterbauer H (1987) Modification of human serum low density lipoprotein by oxidation-characterization and pathophysiological implications. Chem Phys Lipids 45: 315–336

    CAS  Google Scholar 

  • Juergens G, Chen Q, Esterbauer H, Mair S, Ledinski G, Dinges HP (1993) Atherogenic lipoproteins in man. Immunostaining of human autopsy aorta with antibodies to modified apolipoprotein B and apolipoprotein (a). Arterioscler Thromb 13: 1689–1699

    CAS  Google Scholar 

  • Kamido H, Kuksis A, Marai L, Myher JJ (1992) Identification of cholesterol-bound aldehydes in copper-oxidized low density lipoprotein. FEBS Lett 304: 269–272

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Territo MC, Wayner E, Carlos TM, Parhami F, Smith CW, Haberland ME, Fogelman AM, Berliner JA (1994) Partial characterization of leukocyte binding molecules on endothelial cells induced by minimally oxidized LDL. Arterioscler Thromb 14: 427–433

    PubMed  Google Scholar 

  • Kleinveld HA, Hak-Lemmers HLM, Stalenhoef AFH, Demacker PNM (1992) Improved measurement of low-density lipoprotein susceptibility of copper-induced oxidation: application of a short procedure for isolating low-density lipoprotein. Clin Chem 38: 2066–2072

    CAS  PubMed  Google Scholar 

  • Kontush A, Hübner C, Finckh B, Kohlschütter A, Beisiegel U (1994) Low density lipoprotein oxidizability by copper correlates to its initial ubiquinol-10 and polyunsaturated fatty acid content. FEBS Lett 341: 69–73

    Article  CAS  PubMed  Google Scholar 

  • Krauss RM (1991) Low-density lipoprotein subclasses and risk of coronary artery disease. Curr Opin Lipidol 2: 248–252

    CAS  Google Scholar 

  • Kritharides L, Jessup W, Gifford J, Dean RT (1993) A method for defining the stages of low-density lipoprotein oxidation by the separation of cholesterol-and cholesteryl ester-oxidation products using HPLC. Anal Biochem 213: 79–89

    Article  CAS  PubMed  Google Scholar 

  • Kugiyama K, Sakamoto T, Misumi I, Sugiyama S, Ohgushi M, Ogawa H, Horiguchi M, Yasue H (1993) Transferable lipids in oxidized low-density lipoprotein stimulate plasminogen activator inhibitor-1 and inhibit tissue-type plasminogen activator release from endothelial cells. Circ Res 73: 335–343

    CAS  PubMed  Google Scholar 

  • Kühn H, Belkner J, Wiesner R, Schewe T, Lankin VZ, Tikhaze AK (1992) Structure elucidation of oxygenated lipids in human atherosclerotic lesions. Eicosanoids 5: 17–22

    PubMed  Google Scholar 

  • Kühn H, Belkner J, Zaiss S, Fährenklemper T, Wohlfeil S (1994) Involvement of 15-lipoxygenase in early stages of atherogenesis. J Exp Med 179: 1903–1911

    PubMed  Google Scholar 

  • Kuzuya M, Yamada K, Hayashi T, Funaki C, Naito M, Asai K, Cuzuya F (1992) Role of lipoprotein-copper complex in copper-catalyzed peroxidation of low-density lipoprotein. Biochim Biophys Acta 1123: 334–341

    CAS  PubMed  Google Scholar 

  • Lamb DJ, Leake DS (1994) Iron released from transferrin at acidic pH can catalyse the oxidation of low density lipoprotein. FEBS Lett 352: 15–18

    Article  CAS  PubMed  Google Scholar 

  • Leake DS (1993) Oxidised low density lipoproteins and atherogenesis. Br Heart J 69: 476–478

    CAS  PubMed  Google Scholar 

  • Lehr HA, Hübner C, Finckh B, Angermüller S, Nolte D, Beisiegel U, Kohlschütter A, Messmer K (1991) Role of leukotrienes in leukocyte adhesion following systemic administration of oxidatively modified human low density lipoprotein in hamsters. J Clin Invest 88: 9–14

    CAS  PubMed  Google Scholar 

  • Lenz ML, Hughes H, Mitchell JR, Via DP, Guyton JR, Taylor AA, Gotto AM, Smith C (1990) Lipid hydroperoxy and hydroxy derivatives in copper-catalyzed oxidation of low density lipoprotein. J Lipid Res 31: 1043–1050

    CAS  PubMed  Google Scholar 

  • Liao F, Berliner JA, Mehrabian M, Navab M, Demer LL, Lusis AJ, Fogelman AM (1991) Minimally modified low density lipoprotein is biologically active in vivo in mice. J Clin Invest 87: 2253–2257

    CAS  PubMed  Google Scholar 

  • Liu SY, Lu X, Choy S, Dembinski TC, Hatch GM, Mymin D, Shen X, Angel A, Choy PC, Man RYK (1994) Alteration of lysophosphatidylcholine content in low density lipoprotein after oxidative modification: relationship to endothelium dependent relaxation. Cardiovasc Res 28: 1476–1481

    CAS  PubMed  Google Scholar 

  • Lodge JK, Patel SU, Sadler PJ (1993) Aldehydes from metal ion-and lipoxygenase-induced lipid peroxidation: detection by 1H-NMR spectroscopy. Biochem J 289: 149–153

    CAS  PubMed  Google Scholar 

  • Lyons TJ (1991) Oxidized low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes? Diabetic Med 8: 411–419

    CAS  PubMed  Google Scholar 

  • Malavasi B, Rasetti MF, Roma P, Fogliatto R, Allevi P, Catapano AL, Galli G (1992) Evidence for the presence of 7-hydroperoxy cholest-5-en-3β-ol in oxidized human LDL. Chem Phys Lipids 62: 209–214

    CAS  PubMed  Google Scholar 

  • Malden LT, Chait A, Raines EW, Ross R (1991) The influence of oxidatively modified low density lipoproteins on expression of platelet-derived growth factor by human monocyte-derived macrophages. J Biol Chem 266: 13901–13907

    CAS  PubMed  Google Scholar 

  • McNally AM, Chisolm GM, Morel DW, Cathcart MK (1990) Activated human monocytes oxidize low-density lipoprotein by a lipoxygenase-dependent pathway. J Immunol 145: 254–259

    CAS  PubMed  Google Scholar 

  • Mino M, Miki M, Miyake M, Ogiahara T (1989) Nutritional assessment of vitamin E in oxidative stress. Ann NY Acad Sci 570: 296–310

    CAS  PubMed  Google Scholar 

  • Mohr D, Bowry VW, Stocker R (1992) Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta 1126: 247–254

    CAS  PubMed  Google Scholar 

  • Nègre-Salvayre A, Salvayre R (1992) UV-treated lipoproteins as a model system for the study of biological effects of lipid peroxides on cultured cells. 4. Calcium is involved in the cytotoxicity of UV-treated LDL on lymphoid cell lines. Biochim Biophys Acta 1123: 207–215

    PubMed  Google Scholar 

  • Niki E (1987) Lipid antioxidants: how they may act in biological systems. Br J Cancer 55: 153–157

    CAS  Google Scholar 

  • Noguchi N, Gotoh N, Niki E (1993) Dynamics of the oxidation of low density lipoprotein induced by free radicals. Biochim Biophys Acta 1168: 348–357

    CAS  PubMed  Google Scholar 

  • Ohgushi M, Kugiyama K, Fukunaga K, Murohara T, Sugiyama S, Miyamoto E, Yasue H (1993) Protein kinase C inhibitors prevent impairment of endothelium-dependent relaxation by oxidatively modified LDL. Arterioscler Thromb 13: 1525–1532

    CAS  PubMed  Google Scholar 

  • Palinski W, Rosenfeld ME, Ylä-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D, Witztum JL (1989) Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 86: 1372–1376

    CAS  PubMed  Google Scholar 

  • Palinski W, Ylä-Herttuala S, Rosenfeld ME, Butler SW, Socher SA, Parthasarathy S, Curtiss LK, Witztum JL (1990) Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 10: 325–335

    CAS  PubMed  Google Scholar 

  • Panasenko OM, Evgina SA, Aidyraliev RK, Sergienko VI, Vladimirov YA (1994) Peroxidation of human blood lipoproteins induced by exogenous hypochlorite or hypochlorite generated in the system of “myeloperoxidase + H2O2 + C”. Free Radic Biol Med 16: 143–148

    CAS  PubMed  Google Scholar 

  • Parthasarathy S, Wieland E, Steinberg D (1989) A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA 86: 1046–1050

    CAS  PubMed  Google Scholar 

  • Peng S, Hu B, Morin RJ (1991) Angiotoxicity and atherogenicity of cholesterol oxides. J Clin Lab Anal 5: 144–152

    CAS  PubMed  Google Scholar 

  • Petterson KS, Boberg KM, Stabursvik A, Prydz H (1991) Toxicity of oxygenated cholesterol derivatives toward cultured human umbilical vein endothelial cells. Arteriocler Thromb 11: 423–428

    Google Scholar 

  • Picard S, Parthasarathy S, Fruebis J, Witztum JL (1992) Aminoguanidine inhibits oxidative modification of low density lipoprotein protein and the subsequent increase in uptake by macrophage scavenger receptors. Proc Natl Acad Sci USA 89: 6876–6880

    CAS  PubMed  Google Scholar 

  • Puhl H, Waeg G, Esterbauer H (1994) Methods to determine oxidation of low-density lipoproteins. Methods Enzymol 233: 425–441

    CAS  PubMed  Google Scholar 

  • Quinn MT, Parthasarathy S, Fong LG, Steinberg D (1987) Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA 84: 2995–2998

    CAS  PubMed  Google Scholar 

  • Rankin SM, Parthasarathy S, Steinberg D (1991) Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res 32:449–456

    CAS  PubMed  Google Scholar 

  • Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ (1990) Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 344: 254–257

    Article  CAS  PubMed  Google Scholar 

  • Salmon S, Mazière JC, Santus R, Morliere P (1991) A mechanistic study of the interaction of UVB radiations with human serum lipoproteins. Biochim Biophys Acta 1086: 1–6

    CAS  PubMed  Google Scholar 

  • Salonen J, Ylä-Herttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, Nyyssönen K, Palinski W, Witztum JL (1992) Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 339: 883–887

    CAS  PubMed  Google Scholar 

  • Sato K, Niki E, Shimasaki H (1990) Free radical-mediated chain oxidation of low density lipoprotein and its synergistic inhibition by vitamin E and vitamin C. Arch Biochem Biophys 279: 402–405

    Article  CAS  PubMed  Google Scholar 

  • Sattler W, Mohr D, Stocker R (1994) Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Methods Enzymol 233: 469–489

    CAS  PubMed  Google Scholar 

  • Savenkova MI, Mueller DM, Heinecke JW (1994) Tyrosyl radical generated by myeloperoxidase: a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein. J Biol Chem 269: 20394–20400

    CAS  PubMed  Google Scholar 

  • Sayre LM, Arora PK, Iyer RS, Salomon RG (1993) Pyrrole formation from 4-hydroxynonenal and primary amines. Chem Res Toxicol 6: 19–22

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K, Graier WF, Kostner GM, Mayer B, Kukovetz WR (1990) Activation of soluble guanylate cyclase by nitrovasodilators is inhibited by oxidized low-density lipoprotein. Biochem Biophys Res Commun 172: 614–619

    Article  CAS  PubMed  Google Scholar 

  • Sevanian A, Berliner J, Petterson H (1991) Uptake, metabolism, and cytotoxicity of isomeric cholesterol-5,6-epoxides in rabbit aortic endothelial cells. J Lipid Res 32: 147–155

    CAS  PubMed  Google Scholar 

  • Sevanian A, Seraglia R, Traldi P, Rossato P, Ursini F, Hodis H (1994) Analysis of plasma cholesterol oxidation products using gas-and high-performance liquid chromatography/mass spectrometry. Free Radic Biol Med 17: 397–409

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Mitchinson MJ, Aruoma OI, Halliwell B (1992) Stimulation of lipid peroxidation and hydroxyl-radical generation by the contents of human atherosclerotic lesions. Biochem J 286: 901–905

    CAS  PubMed  Google Scholar 

  • Sommer A, Prenner E, Gorges R, Stütz H, Grillhofer H, Kostner GM, Paltauf F, Hermetter A (1992) Organization of phosphatidyl choline and sphingomyelin in the surface monolayer of low density lipoprotein and lipoprotein(a) as determined by time-resolved fluorometry. J Biol Chem 267: 24217–24222

    CAS  PubMed  Google Scholar 

  • Sparrow CP, Olszewski J (1992) Cellular oxidative modification of low density lipoprotein does not require lipoxygenases. Proc Natl Acad Sci USA 89: 128–131

    CAS  PubMed  Google Scholar 

  • Sparrow CP, Olszewski J (1993) Cellular oxidation of low density lipoprotein is caused by thiol production in media containing transition metal ions. J Lipid Res 34: 1219–1228

    CAS  PubMed  Google Scholar 

  • Sparrow CP, Parthasarathy S, Steinberg D (1988) Enzymatic modification of low density lipoprotein by purified lipoxygenase and phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res 29: 745–753

    CAS  PubMed  Google Scholar 

  • Stalenhoef AFH, Kleinveld HA, Kosmeijer-Schuil TG, Demacker PNM, Katan MB (1993) In vivo oxidised cholesterol in atherosclerosis. Atherosclerosis 98: 113–114

    Article  CAS  PubMed  Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low density lipoprotein that increase its atherogenicity. N Engl J Med 320: 915–924

    CAS  PubMed  Google Scholar 

  • Steinbrecher UP (1987) Oxidation of human low density lipoprotein results in derivatisation of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 262: 3603–3608

    CAS  PubMed  Google Scholar 

  • Steinbrecher UP, Witztum JL, Parthasarathy S, Steinberg D (1987) Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Arteriosclerosis 7: 135–143

    CAS  PubMed  Google Scholar 

  • Steinbrecher UP, Zhang H, Lougheed M (1990) Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med 9: 155–168

    Article  CAS  PubMed  Google Scholar 

  • Stelmaszynska T, Kukovetz E, Egger G, Schaur RJ (1992) Possible involvement of myeloperoxidase in lipid peroxidation. Int J Biochem 24: 121–128

    Article  CAS  PubMed  Google Scholar 

  • Stiko-Rahm A, Hultgardh-Nilsson A, Regnström J, Hamsten A, Nilsson J (1992) Native and oxidized LDL enhances production of PDGF AA and the surface expression of PDGF receptors in cultured human smooth muscle cells. Arterioscler Thromb 12: 1099–1109

    CAS  PubMed  Google Scholar 

  • Stocker R, Bowry VW, Frei B (1991) Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does α-tocopherol. Proc Natl Acad Sci USA 38: 1646–1650

    Google Scholar 

  • Tamasawa N, Takebe K (1992) Analytical examination of oxidized free and esterified 7-ketocholesterol and related oxysterols in human plasma incubated with copper. Tohoku J Exp Med 168: 37–45

    CAS  PubMed  Google Scholar 

  • Terkeltaub R, Banka CL, Solan J, Santoro D, Brand K, Curtiss LK (1994) Oxidized LDL induces monocytic cell expression of interleukin-8, a chemokine with T-lymphocyte chemotactic activity. Arterioscler Thromb 14: 47–53

    CAS  PubMed  Google Scholar 

  • Thomas CE (1992) The influence of medium components on Cu2+-dependent oxidation of low-density lipoproteins and its sensitivity to superoxide dismutase. Biochim Biophys Acta 1128: 50–57

    CAS  PubMed  Google Scholar 

  • Thomas CE, Jackson RL, Ohweiler DF, Ku G (1994a) Multiple lipid oxidation products in low density lipoproteins induce interleukin-1 beta release from human blood mononuclear cells. J Lipid Res 35: 417–427

    CAS  PubMed  Google Scholar 

  • Thomas MJ, Thornburg T, Manning J, Hooper K, Rudel LL (1994b) Fatty acid composition of low-density lipoprotein influences its susceptibility to autoxidation. Biochemistry 33: 1828–1834

    CAS  PubMed  Google Scholar 

  • Thomas JP, Kalyanaraman B, Girotti AW (1994c) Involvement of preexisting lipid hydroperoxides in Cu2+-stimulated oxidation of low-density lipoprotein. Arch Biochem Biophys 315: 244–254

    Article  CAS  PubMed  Google Scholar 

  • Tribble DL, Holl LG, Wood PD, Krauss RM (1992) Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. Atherosclerosis 93: 189–199

    Article  CAS  PubMed  Google Scholar 

  • Tribble DL, Van den Berg JJM, Motchnik PA, Ames BN, Lewis DM, Chait A, Krauss RM (1994) Oxidative susceptibility of low density lipoprotein subfractions is related to their ubiquinol-10 and α-tocopherol content. Proc Natl Acad Sci USA 91: 1183–1187

    CAS  PubMed  Google Scholar 

  • Uchida K, Stadtman ER (1992) Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci USA 89: 4544–4548

    CAS  PubMed  Google Scholar 

  • Uchida K, Stadtman ER (1993) Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 268: 6388–6393

    CAS  PubMed  Google Scholar 

  • Vance JE (1990) Lipoproteins secreted by cultured rat hepatocytes contain the antioxidant 1-alk-1-enyl-2-acylglycerophosphoethanolamine. Biochim Biophys Acta 1045: 128–134

    CAS  PubMed  Google Scholar 

  • Van Hinsbergh VWM, Van Scheffer M, Havekes L, Kempen HJM (1986) Role of endothelial cells and their products in the modification of low-density lipoproteins. Biochim Biophys Acta 878: 49–64

    PubMed  Google Scholar 

  • Wang T, Yu W, Powell WS (1992) Formation of monohydroxy derivatives of arachidonic acid, linoleic acid, and oleic acid during oxidation of low density lipoprotein by copper ions and endothelial cells. J Lipid Res 33: 525–537

    CAS  PubMed  Google Scholar 

  • Weis JR, Pitas RE, Wilson BD, Rodgers GM (1991) Oxidized low-density lipoprotein increases cultured human endothelial cell tissue factor activity and reduces protein C activation. FASEB J 5: 2459–2465

    CAS  PubMed  Google Scholar 

  • Wieland E, Parthasarathy S, Steinberg D (1993) Peroxidase-dependent metal-independent oxidation of low density lipoprotein in vitro: a model for in vivo oxidation? Proc Natl Acad Sci USA 90: 5929–5933

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Sato H, Bannai S (1993) Induction of stress proteins in mouse peritoneal macrophages by oxidized low density lipoprotein. Biochem Biophys Res Commun 193: 1198–1201

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Pownall HJ (1993) Structure and function of apolipoprotein B. In: Rosseneu M (ed) Structure and function of apolipoproteins. CRC Press, Boca Raton, pp 64–84

    Google Scholar 

  • Ylä-Herttuala S, Rosenfeld ME, Parthasarathy S, Glass CK, Sigal E, Witztum JL, Steinberg D (1990) Colocalization of 15-lipoxygenase mRNA and protein with isotopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci USA 87: 6959–6963

    PubMed  Google Scholar 

  • Ylä-Herttuala S, Rosenfeld ME, Parthasarathy S, Glass CK, Sigal E, Särkioja T, Witztum JL, Steinberg D (1991) Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest 87: 1146–1152

    PubMed  Google Scholar 

  • Yoshida Y, Tsuchiya J, Niki E (1994) Interaction of α-tocopherol with copper and its effect on lipid peroxidation. Biochim Biophys Acta 1200: 85–92

    CAS  PubMed  Google Scholar 

  • Zhang H, Basra HJK, Steinbrecher UP (1990) Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. J Lipid Res 31: 1361–1369

    CAS  PubMed  Google Scholar 

  • Zwijsen RML, Japenga SC, Heijen AMP, Van den Bos RC, Koeman JH (1992a) Induction of platelet-derived growth factor chain a gene expression in human smooth muscle cells by oxidized low density lipoproteins. Biochem Biophys Res Commun 186: 1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Zwijsen RML, Oudenhoven IMJ, De Haan LHJ (1992b) Effects of cholesterol and oxysterols on gap junctional communication between human smooth muscle cells. Eur J Pharmacol 228: 115–120

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Esterbauer, H., Ramos, P. (1995). Chemistry and pathophysiology of oxidation of LDL. In: Reviews of Physiology Biochemistry and Pharmacology, Volume 127. Reviews of Physiology, Biochemistry and Pharmacology, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0048264

Download citation

  • DOI: https://doi.org/10.1007/BFb0048264

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60135-7

  • Online ISBN: 978-3-540-49453-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics