Skip to main content

Mechanism of liquid hydrocarbon uptake by microorganisms and growth kinetics

  • Conference paper
  • First Online:
Advances in Biochemical Engineering, Volume 9

Part of the book series: Advances in Biochemical Engineering ((ABE,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ĀP :

mean interfacial area between dispersed ans continuous phase per unit volume of dispersion, cm−1

ā:

mean surface area occupied per cell on oil droplet, cm2

Di :

agitator diameter, cm

dC :

Sauter mean diameter of cells, cm

dP :

Sauter mean diameter of oil droplets, cm

dPO :

Sauter mean diameter of oil droplets in oil-basal salt solution, cm

d* :

dP · dd 1

d *o :

dPO · dd 1

H:

liquid depth in fermentor vessel, cm

KS :

saturation constant for growth kinetic model, g · l−1 in Eq. (1), g · g−1 in Eq. (12)

kLα:

volumetric oxygen transfer coefficient for liquid phase, h−1

N:

agitation speed, rps or rpm

NWe :

Weber number=N2 · D 3i · ρ aq · σ −1

nP :

number of oil droplets per unit volume (cm−3) of dispersion,

Pg :

agitator power consumption in gassed fermentor, hp

QO2 :

oxygen uptake rate, (mole O2) · (g cell)−1 · h−1

Q′O2 :

(oxygen uptake rate) — (endogenous respiration rate), (mole O2) · (g cell)−1 · h−1

S:

concentration of oil in medium, g · l−1

S*:

concentration of accommodated oil in medium, g · l−1

T:

diameter of reactor, cm

t:

growth time, h

V:

working volume of reactor, m3

X:

cell concentration, g · l−1

μ:

specific growth rate, h−1

μ max :

maximum specific growth rate, h−1

ρ:

density of continuous phase, g · cm−3

ρ aq :

density of aqueous phase, g · cm−3

ρ o :

density of oil phase, g · cm−3

σ:

interfacial tension, dyne · cm−1

φ:

volume fraction of oil in medium

References

  1. Mimura, A., Watanabe, S., Takeda, I.: J. Ferment. Technol. 49, 255 (1971).

    CAS  Google Scholar 

  2. Blanch, H. W., Einsele, A.: Biotechnol. Bioeng. 15, 861 (1973).

    Article  CAS  Google Scholar 

  3. Einsele, A., Schneider, H., Fiechter, A.: J. Ferment. Technol. 53, 241 (1975).

    Google Scholar 

  4. Kaeppeli, O., Fiechter, A.: Biotechnol. Bioeng. 18, 967 (1976).

    Article  CAS  Google Scholar 

  5. Hug, H., Blanch, H. W., Fiechter, A.: Biotechnol. Bioeng. 16, 965 (1974).

    Article  CAS  Google Scholar 

  6. Kaeppeli, O.: Dissertation, Eidgenössische Technische Hochschule Zürich, 1976.

    Google Scholar 

  7. Osumi, M., Fukuzumi, F., Yamada, N., Nagatani, T., Teranishi, Y., Tanaka, A., Fukui, S.: J. Ferment. Technol. 53, 244 (1975).

    Google Scholar 

  8. Miura, Y., Okazaki, M., Hamada, S., Murakawa, S., Yugen, R.: Biotechnol. Bioeng. 19, 701 (1977).

    CAS  Google Scholar 

  9. Aiba, S., Haung, K. L., Moritz, V., Someya, J.: J. Ferment. Technol. 47, 211 (1969).

    CAS  Google Scholar 

  10. Erdstieck, B., Rietema, K.: Antonie van Leeuwenhoek, 35, Supplement, Yeast Symp., F19 (1969).

    Google Scholar 

  11. Yoshida, F., Yamane, T., Yagi, H.: Biotechnol. Bioeng. 13, 215 (1971).

    CAS  Google Scholar 

  12. Yoshida, F., Yamane, T.: Biotechnol. Bioeng. 13, 691 (1971).

    CAS  Google Scholar 

  13. Chakravarty, M., Amin, P. M., Singh, H. D., Baruah, J. N., Iyengar, M. S.: Biotechnol. Bioeng. 14, 61 (1972).

    Article  Google Scholar 

  14. Johnson, M. J.: Chem. Industry 1532 (1964).

    Google Scholar 

  15. Aiba, S., Haung, K. L.: Chem. Eng. Japan 34, 868 (1970).

    Google Scholar 

  16. Dunn, I. J.: Biotechnol. Bioeng. 10, 891 (1968).

    Article  CAS  Google Scholar 

  17. Erickson, L. E., Humphrey, A. E., Prokop, A.: Biotechnol. Bioeng. 11, 449 (1969).

    CAS  Google Scholar 

  18. Prokop, A., Ludvik, M., Erickson, L.: Biotechnol. Bioeng. 14, 587 (1972).

    CAS  Google Scholar 

  19. Wang, D. I. C., Ochoa, A.: Biotechnol. Bioeng. 14, 345 (1972).

    Article  CAS  Google Scholar 

  20. Katinger, H. W. D.: Advances in Microbial Engineering, Part I (Biotechnol. Bioeng. Symp., No. 4), Ed. Sikyta, B., Prokop, A., Novak, M., Eds., New York: Wiley, Interscience, p. 485, 1973.

    Google Scholar 

  21. Erickson, L. E., Humphrey, A. E.: Biotechnol. Bioeng. 11, 467 (1969).

    CAS  Google Scholar 

  22. Erickson, L. E., Humphrey, A. E.: Biotechnol. Bioeng. 11, 489 (1969).

    CAS  Google Scholar 

  23. Erickson, L. E., Fan, L. T., Shah, P. S., Chen, M. S. K.: Biotechnol. Bioeng. 12, 713 (1970).

    Article  CAS  Google Scholar 

  24. Moo-Young, M., Shimizu, T., Whitworth, D. A.: Biotechnol. Bioeng. 13, 741 (1971).

    CAS  Google Scholar 

  25. Moo-Young, M., Shimizu, T.: Biotechnol. Bioeng. 13, 761 (1971).

    CAS  Google Scholar 

  26. Goma, G., Pareilleux, A., Durand, G.: J. Ferment. Technol. 51, 616 (1973).

    CAS  Google Scholar 

  27. Yoshida, F., Yamane, T., Nakamoto, K.: Biotechnol. Bioeng. 15, 257 (1973).

    Article  CAS  Google Scholar 

  28. Yoshida, F., Yamane, T.: Biotechnol. Bioeng. 16, 635 (1974).

    Article  CAS  Google Scholar 

  29. Hisatsuka, K., Nakahara, T., Minoda, Y., Yamada, K.: Agr. Biol. Chem. 39, 999 (1975).

    CAS  Google Scholar 

  30. Chakravarty, M., Singh, H. D., Baruah, J. N.: Biotechnol. Bioeng. 17, 399 (1975).

    Article  CAS  Google Scholar 

  31. Einsele, A., Blanch, H. W., Fiechter, A.: Advances in Microbial Engineering, Part I (Biotechnol. Bioeng., Symp., No. 4), Eds. Sikyta, B., Prokop, A., Novak, M., New York: Wiley, Interscience, p. 445, 1973.

    Google Scholar 

  32. Bakhuis, E., Bos, P.: Antonie von Leeuwenhoek 35, Supplement, Yeast Symp. F 47 (1969).

    Google Scholar 

  33. Nakahara, T., Erickson, L. E., Gutierrez, J. R.: Biotechnol. Bioeng. 19, 9 (1977).

    Article  CAS  Google Scholar 

  34. Shah, P. S., Erickson, L. E., Fan, L. T., Prokop, A.: Biotechnol. Bioeng. 14, 533 (1972).

    Article  CAS  Google Scholar 

  35. Lebeault, J. M., Roche, B., Duvnjak, Z., Azoulay, E.: Arch. Mikrobiol. 72, 140 (1970).

    Article  CAS  Google Scholar 

  36. Van der Linden, A. C., Huydregtse, R.: Antonie van Leeuwenhoek 33, 381 (1967).

    Google Scholar 

  37. Liu, C. M., Johnson, M. J.: J. Bacteriol. 106, 830 (1971).

    CAS  Google Scholar 

  38. Ludvik, J., Munk, V., Dostálek, M.: Experientia 24, 1066 (1968).

    CAS  Google Scholar 

  39. Munk, V., Dostálek, M., Volfová, O.: Biotechnol. Bioeng. 11, 383 (1969).

    Article  CAS  Google Scholar 

  40. Kennedy, R. S., Finnerty, W. R.: the 72nd Annu. Meeting of the Amer. Soc. for Microbiol. (AMS) April 23–28, Philadelphia, Pa., 1972.

    Google Scholar 

  41. Volfová, O., Munk, V., Dostálek, M.: Experientia 23, 1005 (1967).

    Article  Google Scholar 

  42. Lebeault, J. M., Roche, B., Duvnjak, Z., Azoulay, E.: J. Bacteriol. 100, 1218 (1969).

    CAS  Google Scholar 

  43. Calderbank, P. H.: Trans. Inst. Chem. Engrs. (London) 36, 443 (1958).

    Google Scholar 

  44. Vermeulen, T., Williams, G. M., Langlois, G. E.: Chem. Eng. Progr. 51, 85F (1955).

    Google Scholar 

  45. Miura, Y., Okazaki, M., Murakawa, S., Hamada, S., Ohno, K.: Biotechnol. Bioeng. 19, 715 (1977).

    CAS  Google Scholar 

  46. Tanaka, A., Fukui, S.: J. Ferment. Technol. 49, 809 (1971).

    CAS  Google Scholar 

  47. Whitworth, D. A., Moo-Young, M., Viswanatha, T.: Biotechnol. Bioeng. 15, 649 (1973).

    Article  CAS  Google Scholar 

  48. Mizuno, M., Shimojima, Y., Iguchi, T., Takeda, I., Senoh, S.: Agr. Biol. Chem. 30, 606 (1966).

    Google Scholar 

  49. Dunlap, K. R., Perry, J. J.: J. Bacteriol. 94, 1919 (1967).

    CAS  Google Scholar 

  50. Nyns, E. J., Chiang, N., Wiaux, A. C.: Antonie van Leeuwenhoek, 34, 197 (1968).

    CAS  Google Scholar 

  51. Koronelli, T. V.: Mikrobiologya 37, 984 (1968).

    CAS  Google Scholar 

  52. Vestal, J. R., Perry J. J.: Can. J. Microbiol. 17, 445 (1971).

    CAS  Google Scholar 

  53. Kaeppeli, O., Aeschbach, H., Schneider, H., Fiechter, A.: European J. Appl. Microbiol. 1, 199 (1975).

    CAS  Google Scholar 

  54. Hirai, M., Shimizu, S., Teranishi, Y., Tanaka, A., Fukui, S.: Agr. Biol. Chem. 36, 2335 (1972).

    CAS  Google Scholar 

  55. Osumi, M., Miwa, N., Teranishi, Y., Tanaka, A., Fukui, S.: Arch. Mikrobiol. 99, 181 (1974).

    CAS  Google Scholar 

  56. Osumi, M., Fukuzumi, F., Teranishi, Y., Tanaka, A., Fukui, S.: Arch. Microbiol. 103, 1 (1975).

    Article  CAS  Google Scholar 

  57. Teranishi, Y., Tanaka, A., Osumi, M., Fukui, S.: Agr. Biol. Chem. 38, 1213 (1974).

    CAS  Google Scholar 

  58. Teranishi, Y., Kawamoto, S., Tanaka, A., Osumi, M., Fukui, S.: Agr. Biol. Chem. 38, 1221 (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag

About this paper

Cite this paper

Miura, Y. (1978). Mechanism of liquid hydrocarbon uptake by microorganisms and growth kinetics. In: Advances in Biochemical Engineering, Volume 9. Advances in Biochemical Engineering, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0048090

Download citation

  • DOI: https://doi.org/10.1007/BFb0048090

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08606-2

  • Online ISBN: 978-3-540-35950-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics