Skip to main content

The positive energy theorem and its extensions

  • Conference paper
  • First Online:
Book cover Asymptotic Behavior of Mass and Spacetime Geometry

Part of the book series: Lecture Notes in Physics ((LNP,volume 202))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a more detailed review of these results see Y. Choquet-Bruhat, “Positive Energy Theorems”, 1983 Les Houches Lectures.

    Google Scholar 

  2. G. Abbott, S. Deser, Nucl. Phys. B195, 76 (1982).

    Article  ADS  Google Scholar 

  3. P. Breitenlohner, D. Freedman, Phys. Lett. 115B, 197 (1982); Ann. Phys. 144, 249 (1982).

    ADS  MathSciNet  Google Scholar 

  4. G. Gibbons, C. Hull, N. Warner, Nucl. Phys. B218, 173 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  5. G. Gibbons, S. Hawking, G. Horowitz, M. Perry, Commun. Math. Phys. 88, 295 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  6. For alternative definitions of asymptotic flatness at spatial infinity see R. Geroch in Asymptotic Structure of Space-Time, Eds. F. Esposito and L. Witten, Plenum, New York (1977); and A. Ashtekar in General Relativity and Gravitation, Vol. 2, Ed. A. Held, Plenum, New York (1980).

    Google Scholar 

  7. R. Arnowitt, S. Deser, C. Misner, Phys. Rev. 122, 997 (1961).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. J. Nester, Phys. Lett. 83A, 241 (1981).

    ADS  MathSciNet  Google Scholar 

  9. This can perhaps be improved by imposing an additional condition on ξa. If ξa is chosen to be a timelike Killing field, then replacing Fab with wab just yields Komar's formula for the total energy. (A. Komar, Phys. Rev. 113, 934 (1959).)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. We adopt the notation and sign conventions of F. Pirani in Lectures on General Relativity Brandeis Summer Institute in Theoretical Physics, Prentice Hall, New Jersey (1965). Thus the metric has signature (+—) and the curvature tensors are defined by \(2\nabla _{[a} \nabla _{b]} \xi _c = - R_{abc} ^d \xi _d ,R_{ab} = R_{amb} ^m .\)

    MATH  Google Scholar 

  11. If one considers a pair of two component spinors, i.e. a Dirac spinor, then one can discuss changes in orientation. However, in this case the spinors change sign as well as the εabcd, so the total four momentum is invariant.

    Google Scholar 

  12. S. Hawking and G. Ellis, The Large Scale Structure of Space-Time Cambridge University Press, Cambridge (1973).

    Book  MATH  Google Scholar 

  13. H. Araki, Ann. Phys. 7, 456 (1959).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. D. Brill, Ann. Phys. 7, 466 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Brill, P. Jang in General Relativity and Gravitation Vol. 1, Ed. A. Hled, Plenum, New York (1980).

    Google Scholar 

  16. J. York, in Essays in General Relativity ed. F. Tipler Academic Press, New York (1980).

    Google Scholar 

  17. R. Schoen, S.-T. Yau, Commun. Math. Phys. 65, 45 (1979); Phys. Rev. Lett. 43, 1457 (1979); Commun. Math. Phys. 79,47 (1981); 79, 231 (1981). The first paper gives the proof assuming there is a maximal surface. The second outlines the general proof. The third weakens the boundary conditions required at infinity, and the fourth gives further details.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. S. Hawking, R. Penrose, Proc. Roy. Soc. Lond. A314, 529 (1970). The similarity between the proof of the singular ty theorem and Schoen and Yau's proof of the positive energy theorem was pointed out in reference (15).

    ADS  MathSciNet  Google Scholar 

  19. E. Witten, Commun. Math. Phys. 80, 381 (1981).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. G. Horowitz, M. Perry, Phys. Rev. Lett. 48, 371 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Parker, C. Taubes, Commun. Math Phys. 84, 223 (1982).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. O. Reula, J. Math. Phys. 23, 810 (1982).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. C. Teitelboim, Phys. Lett. 69B, 240 (1977); S. Deser, C. Teitelboim, Phys. Rev. Lett. 39, 249 (1977).

    ADS  MathSciNet  Google Scholar 

  24. M. Grisaru, Phys. Lett.73B, 207 (1978).

    ADS  Google Scholar 

  25. G. Horowitz, A. Strominger, Phys. Rev. D27, 2793 (1983).

    ADS  MathSciNet  Google Scholar 

  26. S. Deser, Phys. Rev. D27, 2805 (1983).

    ADS  MathSciNet  Google Scholar 

  27. C.M. Hull, Commun. Math. Phys. 90, 545 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  28. For a precise definition of asymptotic flatness at null infinity see R. Penrose, Proc. Roy. Soc. Lond. A284, 159 (1965) and Reference (5).

    ADS  MathSciNet  Google Scholar 

  29. H. Bondi, M. Van der Burg, A. Metzner, Proc. Roy. Soc. Lond. A269, 21 (1962); R. Sachs, Proc. Roy. Soc. Lond. A270, 103 (1962); Phys. Rev. 128, 2851 (1962).

    ADS  Google Scholar 

  30. R. Geroch, J. Winicour, J. Math. Phys. 22, 803 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J. Nester, W. Israel, Phys. Lett. 85A, 259 (1981).

    ADS  MathSciNet  Google Scholar 

  32. Although Eq. (20) looks identical toy (6) there is a slight difference. On an asymptotically flat surface, dgα A is defined to be a spinor satisfying ∂m °α A = 0 where ∂m is the derivative operator of the flat metric that the physical metric approaches. On an asymptotic null cone one does not have a flat three metric. Instead one defines °α A to a spinor whose components in the standard spinor basis are just spin ½ spherical harmonics.

    Google Scholar 

  33. A. Ashtekar, A. Magnon-Ashtekar, Phys. Rev. Lett. 43, 181 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  34. For a detailed review of this result see M. Walker in Gravitational Radiation, Eds. N. Deruelle and T. Piran, North Holland (1983).

    Google Scholar 

  35. R. Schoen and S.-T. Yau, Phys. Rev. Lett. 48, 369 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Ludvigsen, J. Vickers, J. Phys. A15, L67 (1982).

    ADS  MathSciNet  Google Scholar 

  37. O. Reula, P. Tod, “Positivity of the Bondi Energy,” Oxford University Preprint (1983).

    Google Scholar 

  38. A different boundary condition which also yields a positive surface integral is discussed in M. Ludvigsen, J. Vickers, “Trapped Surfaces and the Positivity of the Bondi Mass,” University of Canterbury preprint (1982).

    Google Scholar 

  39. A. Ashtekar, G. Horowitz, Phys. Lett. 89A, 181 (1982).

    ADS  MathSciNet  Google Scholar 

  40. G. Gibbons, C. Hull, Phys. Lett. 109B, 190 (1982).

    ADS  MathSciNet  Google Scholar 

  41. P. Tod, Phys. Lett. 121B, 241 (1983). This paper also discusses plane wave spacetimes which are not asymptotically flat.

    ADS  MathSciNet  Google Scholar 

  42. O. Moreschi, G. Sparling, “Positive Energy Theorem in Kaluza-Klein Theory” in 5 Dimensions and a New Theorem in 4 Dimensions: University of Pittsburgh, preprint (1983).

    Google Scholar 

  43. R. Penrose, Ann. N.Y. Acad. Sci. 224, 125 (1973).

    Article  ADS  MATH  Google Scholar 

  44. P. Jang, R. Wald, J. Math. Phys. 18, 41, (1977).

    Article  ADS  MathSciNet  Google Scholar 

  45. J. Friedman, S. Mayer, J. Math. Phys. 23, 109 (1982).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. R. Penrose, Rev. Nuovo Cimento 1, 252 (1969). *** DIRECT SUPPORT *** A3418159 00002

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francis J. Flaherty

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Horowitz, G.T. (1984). The positive energy theorem and its extensions. In: Flaherty, F.J. (eds) Asymptotic Behavior of Mass and Spacetime Geometry. Lecture Notes in Physics, vol 202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0048063

Download citation

  • DOI: https://doi.org/10.1007/BFb0048063

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13351-3

  • Online ISBN: 978-3-540-38897-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics