Skip to main content

Rheological properties of human erythrocytes and their influence upon the “Anomalous” viscosity of blood

  • Conference paper
  • First Online:
Ergebnisse der Physiologie Reviews of Physiology, Volume 63

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeckström, P., Folkow, B., Löfving, B., Kovach, A. B. G., Öberg, B.: Evidence of plugging of the microcirculation following acute hemorrhage. Proc. VI. Conf. on Microcirculation (Aalborg 1970). Bibl. anat. (Basel) 11 (in press).

    Google Scholar 

  2. Baker, R. F.: Ultrastructure of the red blood cell. Fed. Proc. 26, 1785–1801 (1967).

    PubMed  CAS  Google Scholar 

  3. Barras, J. P.: L’écoulement du sang dans les capillaires. Helv. med. Acta 34, 468–477 (1968).

    Google Scholar 

  4. Bayliss, L. E.: Rheology of blood and lymph. In: Deformation and flow in biological systems (A. Frey-Wissling, ed.), p. 354–418. Amsterdam: North Holland Publ. Co. 1952.

    Google Scholar 

  5. — The rheology of blood. In: Handbook of Physiology, Sect. 2, Circulat. (I. W. F. Hamilton and P. Dow, eds.), p. 137–150. Washington, D.C. 1962.

    Google Scholar 

  6. Benis, A. M.: The flow of blood through models of the microcirculation. Doctorate thesis. Massachusetts Institute of Technology (1964).

    Google Scholar 

  7. — Lacoste, J.: Study of erythrocyte aggregation by blood viscometry at low shear rates using a balance method. Circulat. Res. 22, 29–41 (1968).

    PubMed  CAS  Google Scholar 

  8. — Usami, S., Chien, S.: Role of viscosity and inertial losses in pressure-flow relations studied on perfused canine hindpaw. Fed. Proc. 29, 259 Abs. (1970).

    Google Scholar 

  9. Bermann, H. J.: Rheological properties of the microvasculature. Bibl. anat. (Basel) 7, 29–34 (1965).

    Google Scholar 

  10. — Fuhro, R. L.: Effect of rate of shear on the velocity-profile and orientation of red cell in arterioles. Bibl. anat. (Basel) 10, 32–37 (1969).

    Google Scholar 

  11. Bingham, E. C., Roepke, R. R.: The rheology of blood. IV. The fluidity of whole blood at 37° C. J. gen. Physiol. 28, 131–149 (1944).

    PubMed  CAS  Google Scholar 

  12. Bloch, E. H.: A quantitative study of the hemodynamics in the living vascular system. Amer. J. Anat. 110, 112–154 (1962).

    Google Scholar 

  13. —High speed cinephotography of the microvascular system. In: Hemorheology, Proc. 1st Intern. Conf. (A. L. Copley, ed.), p. 655–667. Oxford: Pergamon Press 1968.

    Google Scholar 

  14. Bollinger, A., Simon, H. J., Köhler, R., Lüthy, E.: Wirkung von niedermolekularem Dextran auf Blutviskosität und Extremitätendurchblutung. Z. Kreisl.-Forsch. 57, 456–465 (1968).

    CAS  Google Scholar 

  15. Braasch, D.: Verminderte Erythrozytenflexibilität (hervorgerufen durch Barbiturate, Verbrennung, Hypoxämien) und ihre Wirkung auf den Kapillarkreislauf. Pflügers Arch. ges. Physiol. 278, 130–140 (1963).

    CAS  Google Scholar 

  16. Branemark, P. I., Lindström, J.: Shape of circulating blood corpuscles. Biorheology 1, 139–142 (1963).

    Google Scholar 

  17. Brooks, D. E., Goodwin, J. W., Seaman, G. V. F.: Interactions among erythrocytes under shear. J. Appl. Physiol. 28, 172–177 (1970).

    PubMed  CAS  Google Scholar 

  18. Brundage, J. T.: Blood and plasma viscosity determined by the method of concentric cylinders. Amer. J. Physiol. 110, 659–665 (1934).

    Google Scholar 

  19. Bugliarello, G., Hayden, G.: Detailed characteristics of the flow of blood in vitro. Trans. Soc. Rheol. 7, 209–230 (1963).

    Google Scholar 

  20. Burton, A. C.: The physical equilibrium of small blood vessels. Amer. J. Physiol. 149, 389–399 (1947).

    Google Scholar 

  21. —Physiology and biophysics of the circulation. Chicago: Year Book Medical Publ. Inc. 1965.

    Google Scholar 

  22. —In: Ciba Symposion on Mass Transport. London: Churchill 1968.

    Google Scholar 

  23. Canham, P. B., Burton, A. C.: Distribution in size and shape in populations of human red cells. Circulat. Res. 22, 405–417 (1968).

    PubMed  CAS  Google Scholar 

  24. Casson, N.: A flow equation for pigment-oil suspensions of the printing ink type. In: Rheology of disperse systems (C. C. Mill, ed.). New York-London-Paris-Los Angeles: Pergamon Press 1959.

    Google Scholar 

  25. Charm, S. E., Kurland, G. S., Brown, S. L.: The flow characteristics of blood suspensions. In: Biomedical fluid mechanics Symposion, Denver 1966; p. 89–93. New York: Amer. Soc. Mech. Eng. 1966.

    Google Scholar 

  26. Charm, S. E.: Static method for determining blood yield stress. Nature (Lond.) 216, 1121–1123 (1967).

    PubMed  CAS  Google Scholar 

  27. —Discrepancy in measuring blood in couette, cone plate and capillary tube viscometers. J. appl. Physiol. 25, 786–789 (1968).

    PubMed  CAS  Google Scholar 

  28. Chien, S., Dellenback, R. J., Usami, S., Gregersen, M. I.: Plasma trapping in hematocrit determination. Difference among animal species. Proc. Soc. exp. Biol. (N.Y.) 119, 1155–1161 (1965).

    PubMed  CAS  Google Scholar 

  29. — Usami, S., Taylor, H. M., Lundberg, J. L., Gregersen, M. I.: effect of hematocrit and plasmaproteins on human blood rheology at low rates of shear. J. appl. Physiol. 21, 81–87 (1966).

    PubMed  CAS  Google Scholar 

  30. — — Dellenback, R. J., Gregersen, M. I.: Blood viscosity: Influence of erythrocyte deformation. Science 157, 827–829 (1967).

    PubMed  CAS  Google Scholar 

  31. — — — — Nanninga, L. B., Guest, M. M.: Blood viscosity: Influence of erythrocyte aggregation. Science 157, 829–831 (1967).

    PubMed  CAS  Google Scholar 

  32. — Dellenback, R. J., Usami, S., Seaman, G. V. F., Gregersen, M. I.: Centrifugal packing of suspensions of erythrocytes hardened with acetaldehyde. Proc. Soc. exp. Biol. (N.Y.) 127, 982–985 (1968).

    PubMed  CAS  Google Scholar 

  33. —Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168, 977–979 (1970).

    PubMed  CAS  Google Scholar 

  34. Colemans, B. D., Markovitz, H., Noll, H.: Viscometric flows of non-Newtonian fluids. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  35. Cokelet, G. R., Merrill, E. W., Gilliland, E. R., Shin, H.: The rheology of human blood. Measurement near and at zero shear rate. Trans. Soc. Rheol. 7, 303–317 (1963).

    Google Scholar 

  36. — The rheology of human blood. D. Sc. Thesis, Massachusetts Institute of Technology (1963).

    Google Scholar 

  37. — Meiselman, H. J.: Rheological comparison of hemoglobin solutions and erythrocyte suspensions. Science 162, 275–277 (1968).

    PubMed  CAS  Google Scholar 

  38. Couette, M. M.: Ann. Chim. Phys. 21, 433 (1890). Cit. bei Wayland (Ref. 168).

    Google Scholar 

  39. Dickmans, H. A., Gaethgens, P. A. L., Eisolt, J., Hirsch, H.: The effect of Dextran-induced changes in the flow properties of blood upon resistance to flow in the intestinal vascular bed. Proc. VI. Conf. on microcirculation (Aalborg 1970). Bibl. anat. (Basel) 11 (in press).

    Google Scholar 

  40. Dintenfass, L.: Thixotropy of blood and proneness to thrombus formation. Circulat. Res. 11, 233–239 (1962).

    CAS  Google Scholar 

  41. —Viscosity and clotting of blood in venous thrombosis and coronary occlusion. Circulat. Res. 14, 1 (1964).

    PubMed  CAS  Google Scholar 

  42. —Rheology of packed red cells containing hemoglobins AA, S-A and S-S. J. Lab. clin. Med. 64, 594–600 (1964).

    PubMed  CAS  Google Scholar 

  43. —Molecular and rheological considerations of the red cell membrane in view of the internal fluidity of the red cell. Acta haemat. (Basel) 32, 299–313 (1964).

    PubMed  CAS  Google Scholar 

  44. — Burnard, E. D.: Effect of hydrogen ion concentration on the in-vitro viscosity of packed red cells and blood at high hematocrits. Med. J. Aust. 1, 1072–1074 (1966).

    PubMed  CAS  Google Scholar 

  45. —Internal viscosity of the red cell and a blood viscosity equation. Nature (Lond.) 219, 956–958 (1968).

    PubMed  CAS  Google Scholar 

  46. Djojosugito, A. M., Folkow, B., Öberg, B., White, S.: A comparison of blood viscosity measured in vitro and in a vascular bed. Acta physiol. scand. 78, 70–84 (1970).

    PubMed  CAS  Google Scholar 

  47. Drabkin, D. L., Austin, J. H.: Biol. Chem. 112, 51 (1935).

    CAS  Google Scholar 

  48. Ehrly, A. M.: Hämorheologische Probleme bei Venenerkrankungen. Zbl. Phlebologie 6, 338–343 (1967).

    CAS  Google Scholar 

  49. Einstein, A.: Eine neue Bestimmung der Moleküldimensionen. Ann. Physik 19, 289–306 (1906).

    CAS  Google Scholar 

  50. Erslev, A. J., Atwater, J.: Effects of mean corpuscular hemoglobin concentration on viscosity. J. Lab. clin. Med. 62, 401–406 (1963).

    PubMed  CAS  Google Scholar 

  51. Fahraeus, R.: Suspension-stability of the blood. Acta med. scand. 55, 1–228 (1921).

    Google Scholar 

  52. —The suspension stability of blood. Physiol. Rev. 9, 241–274 (1929).

    Google Scholar 

  53. Lindqvist, T.: The viscosity of blood in narrow capillary tubes. Amer. J. Physiol. 96, 562 (1931).

    Google Scholar 

  54. Fung, Y. C.: Theoretical considerations of the elasticity of red cells and small blood vessels. Fed. Proc. 25, 1761–1772 (1966).

    PubMed  CAS  Google Scholar 

  55. —Blood flow in the capillary bed. Biomechanics 2, 353–372 (1969).

    CAS  Google Scholar 

  56. Gaehtgens, P., Meiselman, H. J., Wayland, H.: Velocity profiles of human blood at normal and reduced hematocrit in glass tubes up to 130 µm diameter. Microvascular Res. 2, 13–23 (1970).

    CAS  Google Scholar 

  57. Gelin, L. E., Zederfeldt, B.: Experimental evidence of the significance of disturbances in the flow properties of blood. Acta chir. scand. 122, 336–342 (1961).

    PubMed  CAS  Google Scholar 

  58. Gerbstädt, H., Vogtmann, C. H., Rüth, P., Schöntube, E.: Die Scheinviskosität von Blut in Glaskapillaren kleinster Durchmesser. Naturwissenschaften 53, 526 (1966).

    PubMed  Google Scholar 

  59. Gillison, P. J., Dauwalter, C. R., Merrill, E. W.: A rotational viscometer using A. C. torque to balance loop and air-bearing. Trans. Soc. Rheol. 7, 319–331 (1963).

    Google Scholar 

  60. Goldsmith, H. L., Mason, S. G.: Some model experiments in haemodynamics. Bibl. anat. (Basel) 4, 462–478 (1964).

    Google Scholar 

  61. — —Some model experiments in haemodynamics II. Bibl. anat. (Basel) 7, 353–362 (1965).

    PubMed  CAS  Google Scholar 

  62. —Microscopic flow properties of red cells. Fed. Proc. 26, 1813–1820 (1967).

    PubMed  CAS  Google Scholar 

  63. — Mason, S. G.: The microrheology of dispersions. In: Rheology, theory and applications, vol. IV (F. R. Eirich, ed.), p. 86–249. New York: Academic Press 1967.

    Google Scholar 

  64. —The microrheology of red blood cell suspensions. J. gen. Physiol. 52, 5–27 (1968).

    PubMed  CAS  Google Scholar 

  65. — Mason, S. G.: Model particles and red cells in flowing concentrated suspensions. Bibl. anat. (Basel) 10, 1–8 (1969).

    PubMed  CAS  Google Scholar 

  66. —Flow and deformation of red blood cells in concentrated suspensions. Fed. Proc. 28, 423 (1969).

    Google Scholar 

  67. — Beitel, L.: Axial migration of red cells in tube flow. Fed. Proc. 29, 319 (1970).

    Google Scholar 

  68. Goldstone, J., Hutchins, P. M., Wells, R. E.: In vivo flow behavior of nondeformable erythrocytes. Microvascular Res. 2, 1 (1970).

    Google Scholar 

  69. — Schmid-Schönbein, H., Wells, R. E.: The rheology of red blood cell aggregates. Microvascular Res. 2, 273–786 (1970).

    CAS  Google Scholar 

  70. Hutchins, P. M., Mentzer, W. C., Nathan, D., Wells, R. E.: Erythrocyte deformation in sickle cell disease. Proc. XIII. Internat. Congr. Hematology, Munich 1970.

    Google Scholar 

  71. Goll, K. H.: Vergleich der Methoden der Erythrozytensedimentationsgeschwindigkeit. Acta biol. med. germ. 2, 590–598 (1959).

    PubMed  CAS  Google Scholar 

  72. Gregersen, M. I., Chien, S., Peric, B., Taylor, H.: Investigations of blood viscosity at low rates of shear: effects of variations in the concentration and character of the red cells and in the composition of the suspending medium. Bibl. anat. (Basel) 7, 383–384 (1965).

    PubMed  CAS  Google Scholar 

  73. — Bryant, C. A., Hammerle, W. E., Usami, S., Chien, S.: Flow characteristics of human erythrocytes through polycarbonate sieves. Science 157, 825–827 (1967).

    PubMed  CAS  Google Scholar 

  74. — —Evaluation of deformability of red cells by sieving tests. Hemorheology, Proc. 1st Intern. Conf. Reykjavik 1966 A. L. Copley, ed.), p. 539–549. Oxford: Pergamon Press 1968.

    Google Scholar 

  75. Guest, M. M., Bond, T., Cooper, R. G., Derrick, J. R.: Red blood cells: change in shape in capillaries. Science 142, 1319–1320 (1963).

    PubMed  CAS  Google Scholar 

  76. Hagen, G.: Über die Bewegung des Wassers in engen zylindrischen Röhren. Poggendorf’sche Ann. Phys. Chem. 46, 423–442 (1839).

    Google Scholar 

  77. Ham, T. H., Dunn, R. F., Sayre, R. W., Murphy, J. R.: Physical properties of red cells as related to the effects in vivo. I. Increased rigidity of erythrocytes as measured by viscosity of cells altered by chemical fixation, sickling and hypertonicity. Blood 32, 847–861 (1968).

    PubMed  CAS  Google Scholar 

  78. Ham, T. H., Sayre, R. W., Dunn, R. F., Murphy, J. R.: Physical properties of red cells as related to effects in vivo. Effect of thermal treatment on rigidity of red cells, stroma and sickle cells. Blood 32, 862–871 (1968).

    PubMed  CAS  Google Scholar 

  79. Haynes, R. H., Burton, A. C.: Role of the non-Newtonian behavior of blood in hemodynamics. Amer. J. Physiol. 197, 943–950 (1959).

    PubMed  CAS  Google Scholar 

  80. —Physical basis of the dependence of blood viscosity on tube radius. Amer. J. Physiol. 198, 1193–1200 (1960).

    PubMed  CAS  Google Scholar 

  81. Hess, R. W.: Blutviskosität und Blutkörperchen. Pflügers Arch. ges. Physiol. 140, 354–362 (1911).

    Google Scholar 

  82. —Gehorcht das Blut dem allgemeinen Strömungsgesetz der Flüssigkeiten? Pflügers Arch. ges. Physiol. 162, 187–244 (1915).

    Google Scholar 

  83. Hochmuth, R. M., Sutera, S. P.: Large scale model studies of apparent viscosity and erythrocyte velocity in capillaries. Bibl. anat. (Basel) 10, 113–123 (1969).

    PubMed  CAS  Google Scholar 

  84. Jacobs, H. R.: The “viscosity” of red cell packs. Biorheology 1, 129–138 (1963).

    Google Scholar 

  85. —The deformability of red cell packs. Biorheology 1, 233–238 (1963).

    Google Scholar 

  86. Jandl, J. H., Simmons, R. L., Castle, W. B.: Red cell filtration and the pathogenesis of certain hemolytic anemias. Blood 18, 133–148 (1961).

    PubMed  CAS  Google Scholar 

  87. — Aster, R. H.: Increased splenic pooling and the pathogenesis of hypersplenism. Amer. J. med. Sci. 27, 383–397 (1967).

    Google Scholar 

  88. Jeffery, G. B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. roy. Soc. A 102, 162–179 (1922).

    Google Scholar 

  89. Jobling, A., Roberts, J. E.: Some observations on dilatancy and thixotropy. In: Rheology of dispersed systems (C. C. Mill, ed.), p. 127–138. New York: Pergamon Press 1959.

    Google Scholar 

  90. Katchalsky, A., Kedem, O., Klibansky, C., de Vries, A.: Rheological considerations of the hemolysing red blood cell. In: Flow properties of blood and other biological systems (A. L. Copley and G. Stainsby, eds.), p. 155–171. New York: Pergamon Press 1960.

    Google Scholar 

  91. Knisely, M. H., Bloch, E. H., Eliot, T. S., Warner, L.: Sludged blood. Science 106, 431–433 (1947).

    PubMed  CAS  Google Scholar 

  92. Knisely, M. H. Intravascular erythrocyte aggregation (blood sludge). In: Handbook of physiology, sect. 2, vol. III (W. F. Hamilton and P. Dow, eds.), p. 2249–2292. Washington D.C. 1965.

    Google Scholar 

  93. Knisely, W. H., Mahaley, M. S., Jett, H. H.: Approximation of total vascular space and its distribution in three sizes of blood vessels by plastic casts. Circulat. Res. 6, 20–25 (1958).

    PubMed  CAS  Google Scholar 

  94. Kok, D. A.: Studies of the viscosity of serum in disease states, using a capillary viscosimeter. Biorheology 3, 216–217 (1966).

    Google Scholar 

  95. Kreuzer, F.: Untersuchungen über die Viskosität des Blutserums. Helv. physiol. pharmacol. Acta 8, 486–504 (1950).

    PubMed  CAS  Google Scholar 

  96. Krogh, A.: The anatomy and physiology of capillaries. New York: Hafner 1959.

    Google Scholar 

  97. Lessner, A., Zahive, J., Silberberg, A., Frei, E. H., Dreyfuss, F.: The viscoelastic properties of whole blood. In: Theoretical and clinical hemorheology. Proc. 2nd Internat. Conf. on Hemorheology, Heidelberg 1969. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  98. Levy, M., Share, R. L.: The influence of erythrocyte concentration upon the pressure flow relationship of the dog’s hind limb. Circulat. Res. 1, 247–255 (1953).

    PubMed  CAS  Google Scholar 

  99. Lew, H. S., Fung, Y. C.: Plug effect of erythrocytes in capillary blood vessels. Biophys. J. 10, 80–90 (1970).

    PubMed  CAS  Google Scholar 

  100. Lew, H. S., Fung, Y. C.: The motion of the plasma between the red cells in the bolus flow. Biorheology 6, 109–119 (1969).

    PubMed  CAS  Google Scholar 

  101. Lighthill, M. J.: Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes. J. Fluid Mech. 34, 113–143 (1968).

    Google Scholar 

  102. Litton, A., Berman, H., Walters, C. W.: Quantification of the microvasculature of the hamster-cheekpouch. Anat. Rec. 154, 472 (1966).

    Google Scholar 

  103. Mall, F.: Die Blut-und Lymphwege im Dünndarm des Hundes. Ber. sächs. Ges. Akad. Wiss. 14, 151 (1888).

    Google Scholar 

  104. Mason, S. G.: The microrheology of suspensions with particular reference to blood. In: Theoretical and clinical hemorheology. Proc. 2nd Intern. Conf. on Hemorheology, Heidelberg 1969. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  105. Meiselmann, H. J., Merrill, E. W., Gilliland, E. R., Pelletier, G. A., Salzman, E. W.: Influence of plasma osmolarity on the rheology of human blood. J. appl. Physiol. 22, 772–781 (1967).

    Google Scholar 

  106. Mentzer, W. C., Baehner, R. L., Schmid-Schönbein, H., Robinson, S. H., Nathan, D. G.: Selective Reticulocyte destruction in erythrocyte pyruvate kinase deficiency. J. clin. Invest. (in press).

    Google Scholar 

  107. Merrill, E. W., Gilliland, E. R., Cokelet, G., Shin, H., Britten, A., Wells, R. E.: Rheology of blood and flow in the microcirculation. J. appl. Phys. 18, 255–260 (1963).

    CAS  Google Scholar 

  108. — Cokelet, G. C., Britten, A., Wells, R. E.: Non-Newtonian rheology of human blood. Effect of fibrinogen deduced by substraction. Circulat. Res. 13, 48–55 (1963).

    PubMed  CAS  Google Scholar 

  109. — Gilliland, E. R., Cokelet, G., Shin, H., Britten, A., Wells, R. E.: Rheology of human blood, near and at zero flow. Effects of temperature and hematocrit level. Biophys. J. 3, 199–233 (1963).

    PubMed  CAS  Google Scholar 

  110. — Benis, A. M., Gilliland, E. R., Sherwood, T. K., Salzman, E. W.: Pressure flow relations of human blood in hollow fibers at low flow rates. J. appl. Physiol. 20, 954–967 (1965).

    PubMed  CAS  Google Scholar 

  111. —Rheology of human blood and some speculations on its role in vascular homeostasis. In: Biophysical mechanisms in vascular homeostasis (P. N. Sawyer, ed.), p. 121–137. New York 1965.

    Google Scholar 

  112. — Pelletier, G. A.: Viscosity of human blood: transition from Newtonian to non-Newtonian. J. appl. Physiol. 23, 178–182 (1967).

    PubMed  CAS  Google Scholar 

  113. —Rheology of blood. Physiol. Rev. 49, 863–888 (1969).

    Google Scholar 

  114. Monro, P. A. G.: The appearance of cell-free plasma and “grouping” of red cells in normal circulation in small blood vessels observed in vivo. Biorheology 1, 239–246 (1963).

    Google Scholar 

  115. —Progressive deformation of blood cells with increasing velocity of flowing blood. Bibl. anat. (Basel) 10, 99–103 (1969).

    Google Scholar 

  116. Müller, A.: Abhandlungen zur Mechanik der Flüssigkeiten mit besonderer Berücksichtigung der Hämodynamik. Fascikel I: Die Newtonsche Strömung. Freiburg (Schweiz) u. Leipzig 1936.

    Google Scholar 

  117. Murphy, J. R.: Erythrocyte metabolism. VI. Cell shape and the location of cholesterol in the erythrocyte membrane. J. Lab. clin. Med. 65, 756–774 (1965).

    PubMed  CAS  Google Scholar 

  118. —The influence of pH and temperature on some physical properties of normal erythrocytes and erythrocytes from patients with hereditary spherocytosis. J. Lab. clin. Med. 69, 758–775 (1967).

    PubMed  CAS  Google Scholar 

  119. —Hemoglobin CC disease. Rheological properties of erythrocytes and abnormalities in cell water. J. clin. Invest. 47, 1483–1495 (1968).

    PubMed  CAS  Google Scholar 

  120. Neuschloss, S. M.: Die Viskosität des Blutes. Handbuch der normalen und pathologischen Physiologie, Bd. VI, Teil 1, S. 619–648. 1928.

    Google Scholar 

  121. Perutz, M. F., Liquori, A. M., Eirich, F.: X-Ray and solubility studies of the hemoglobin of sickle cell patients. Nature (Lond.) 167, 929–931 (1951).

    PubMed  CAS  Google Scholar 

  122. Plomann, H.: Ophtalmoskopischer Nachweis von Veränderung der Haltbarkeit von Blutkörperchenaufschwemmung. Hygiea (Stockh.) 82, 363–373 (1920).

    Google Scholar 

  123. Poiseuille, J. L. M.: Recherches expérimentales sur le mouvement des liquides de nature differente dans les tubes de trés petits diamètres. Ann. Chim. Physique 3, 36 (1842).

    Google Scholar 

  124. Du Pré, A., Demning, P., Watson, J. H.: The viscosity of the blood. Proc. roy. Soc. B 78 (1906).

    Google Scholar 

  125. Preusser, H. J.: Elektronenoptische Untersuchungen an Oberflächen von Membranfiltern. Kolloid-Z. 218, 129–136 (1967).

    CAS  Google Scholar 

  126. Prothero, J. W., Burton, A. C.: The physics of blood flow in capillaries. III. The pressure required to deform erythrocytes in acid-citrate-dextrose. Biophys. J. 2, 213–222 (1962).

    PubMed  CAS  Google Scholar 

  127. Rand, R. P., Burton, A. C.: Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. Biophys. J. 4, 115–135 (1964).

    PubMed  CAS  Google Scholar 

  128. —Mechanical properties of the red cell membrane. II. Viscoelastic breakdown of the membrane. Biophys. J. 4, 303–316 (1964).

    PubMed  CAS  Google Scholar 

  129. Rand, P. W., Lacombe, E.: Hemodilution, tonicity and blood viscosity. J. clin. Invest. 43, 2214–2226 (1964).

    PubMed  CAS  Google Scholar 

  130. — Austin, W. H., Lacombe, E., Baker, N.: pH and blood viscosity. J. appl. Physiol. 25, 550–559 (1968).

    PubMed  CAS  Google Scholar 

  131. Reiner, M., Scott-Blair, G. W.: Rheological terminology. In: Rheology, theory and application, vol. IV (F. R. Eirich, ed.), p. 461–488. New York: Academic Press 1967.

    Google Scholar 

  132. Rosenblum, W. J.: Effects of Dextran 40 on blood viscosity in experimental macroglobulinaemia. Nature (Lond.) 218, 591–593 (1968).

    PubMed  CAS  Google Scholar 

  133. Rothman, M.: Ist das Poiseuille’sche Gesetz für Suspensionen gültig? Pflügers Arch. ges. Physiol. 155, 318–345 (1913).

    Google Scholar 

  134. Rowlands, S., Groom, A. C., Thomas, H. W.: The difference in circulation times between erythrocytes and plasma in vivo. Proc. 4th Congr. Rheology, vol. IV (A. L. Copley, ed.), p. 371–380. New York: Wiley 1964.

    Google Scholar 

  135. Ruhenstroht-Bauer, G.: Mechanismus und Bedeutung der beschleunigten Erythrozytensenkung. Klin. Wschr. 44, 531–539 (1966).

    Google Scholar 

  136. Rumscheidt, F. D., Mason, S. G.: Particle motions in sheared suspensions. XI. Internal circulation in fluid drops (experimental). J. Colloid Sci. 16, 210–237 (1961).

    CAS  Google Scholar 

  137. — —Particle motions in sheared suspensions. XII. Deformation and burst of fluid drops in shear and hyperbolic flow. J. Colloid Sci. 16, 238–261 (1961).

    CAS  Google Scholar 

  138. Sacks, A. H., Tickner, E. G.: Viscosity of blood. In: Theoretical and clinical hemorheology. Proc. 2nd Intern. Conf. Hemorheology, Heidelberg 1969. Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  139. Schmid-Schönbein, H., Gaethgens, P., Hirsch, H.: Nicht-Newton’sche Viskosität des Blutes und Erythrozytenaggregation. Proc. III. Symp. Int. Anaest. Poznan 1967, p. 344–351.

    Google Scholar 

  140. — — —Eine neue Methode zur rheologischen Untersuchung von Erythrozyten-aggregaten. Pflügers Arch. ges. Physiol. 297, 107–112 (1967).

    Google Scholar 

  141. — — —On the shear rate dependence of red cell aggregation in vitro. J. clin. Invest. 47, 1447–1454 (1968).

    PubMed  Google Scholar 

  142. — Wells, R. E., Schildkraut, R.: Miscroscopy and viscometry of blood flowing under uniform shear rate (rheoscopy). J. appl. Physiol. 26, 674–678 (1969).

    Google Scholar 

  143. — —Rheological consequences of osmotic red cell crenation. Pflügers Arch. ges. Physiol. 307, 59–69 (1969).

    Google Scholar 

  144. — —Fluid drop like transition of erythrocytes under shear. Science 165, 288–291 (1969).

    Google Scholar 

  145. — — Goldstone, J.: Influence of deformability of human red cells upon blood viscosity. Circulat. Res. 25, 131–143 (1969).

    PubMed  Google Scholar 

  146. Schmid-Schönbein, H., Wells, R. E.: Quantification of the dynamics of red cell aggregation. Bibl. anat. (Basel) 10, 45–51 (1969).

    PubMed  Google Scholar 

  147. — — —Increased viscous resistance of blood due to hypertonicity: a possible mechanism for intrarenal distribution of blood flow. Fed. Proc. 28, 716 abs. (1969).

    Google Scholar 

  148. Schmid-Schönbein, H., Goldstone, J., Wells, R. E.: Blood as an emulsion: red cell fluidity and high shear viscosity of red cell dispersions. Amer. J. Physiol. (in press).

    Google Scholar 

  149. —Hemorheological aspects of splenic function. In: Die Milz (K. Lennert u. D. Harms, eds.), p. 67–80. Berlin-Heidelberg-New York: Springer 1970.

    Google Scholar 

  150. — Goldstone, J., Wells, R. E.: Red cell deformation and red cell aggregation: their influence on blood rheology in health and disease. In: Theoretical and clinical hemorheology. Proc. 2nd Intern. Conf. Hemorheology Heidelberg 1969. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  151. — Erythrocyte fluidity: Hemodynamic signification and methods of quantification in vitro. Proc. VI. Conf. on Microcirculation (Aalborg 1970). Bibl. anat. (Basel) 11 (in press).

    Google Scholar 

  152. Scott-Blair, G. W.: The importance of the sigma phenomenon in the study of the flow of blood. Rheol. Acta 1, 123–126 (1958).

    Google Scholar 

  153. —An equation for the flow of blood, plasma and serum through glass capillaries. Nature (Lond.) 183, 613–614 (1959).

    Google Scholar 

  154. Seaman, G. V. F., Swank, R. L.: The influence of electrokinetic charge and deformability of the red blood cell on the flow properties of its suspensions. Biorheology 4, 47–59 (1967).

    PubMed  CAS  Google Scholar 

  155. Skalak, R., Brånemark, P. I.: Deformation of red blood cells in capillaries. Science 164, 717–719 (1969).

    PubMed  CAS  Google Scholar 

  156. Skovborg, F., Nielsen, A. V., Schlichkrull, J., Ditzel, J.: Blood-viscosity in diabetic patients. Lancet 1966 I, 129–131.

    Google Scholar 

  157. Solvsteen, P., Kristjansen, P. J.: The effect of carbon dioxyde and oxygen on the viscosity of whole blood. Z. Kreisl.-Forsch. 57, 42–46 (1968).

    CAS  Google Scholar 

  158. Somer, T.: The viscosity of blood, plasma and serum in dys-and paraproteinemias. Acta med. scand. 180, Suppl. 456 (1966).

    Google Scholar 

  159. Stone, H. O., Thompson, H. K., Schmidt-Nielsen, K.: Influence of erythrocytes on blood viscosity. Amer. J. Physiol. 214, 913–918 (1968).

    PubMed  CAS  Google Scholar 

  160. Strumia, M. M., Phillips, M.: Effect of red cell factors on the relative viscosity of whole blood. Amer. J. clin. Path. 39, 464–474 (1963).

    CAS  Google Scholar 

  161. Taylor, G. I.: The viscosity of a fluid containing small drops of another fluid. Proc. roy. Soc. A 138, 41–44 (1932).

    Google Scholar 

  162. —The formation of emulsions in definable fields of low. Proc. roy. Soc. A 146, 501–523 (1934).

    Google Scholar 

  163. Teitel, P.: Disk-sphere transformation and plasticity alteration of red blood cells. Nature (Lond.) 206, 409–410 (1965).

    PubMed  CAS  Google Scholar 

  164. — Pathophysiology of hemolytic anemias and microrheological competence of erythrocytes. Proc. XIII Congr. Hematology Munich 1970. (Biorheology 1971, in press).

    Google Scholar 

  165. Tickner, E. G., Sacks, A. H.: Slow flow of rigid particles suspensions through simulated stenoses, Biorheology 5, 275–283 (1968).

    PubMed  CAS  Google Scholar 

  166. Thomas, D. G.: The transport characteristics of suspensions. VII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J. Coll. Sci. 20, 267–277 (1965).

    CAS  Google Scholar 

  167. Thomas, H. W.: On the difference between the clearance curves of labelled red cells and labelled plasma from the circulatory bed of the heart and lung. Biorheology 3, 36–40 (1965).

    PubMed  CAS  Google Scholar 

  168. Thuransky, K.: Der Blutkreislauf der Netzhaut. Ung. Akad. Wiss. Budapest 1957.

    Google Scholar 

  169. Thurston, G. B.: The viscoelasticity of blood and plasma during coagulation in circular tubes. Proc. VI. Conf. on Microcirculation, Aalborg 1970. Bibl. anat. (Basel) 11 (in press).

    Google Scholar 

  170. Wayland, H., Meiselman, H.: Viscometric measurements for blood and plasma. In: Theoretical and Clinical Hemorheology. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  171. Weed, R. I., LaCelle, P. L., Merrill, E. W.: Metabolic dependence of red cell deformability. J. clin. Invest. 48, 795 (1969).

    PubMed  CAS  Google Scholar 

  172. Weidenreich, F.: Über die Form von Säugererythrozyten. Pflügers Arch. ges. Physiol. 132, 143–147 (1910).

    Google Scholar 

  173. Wells, R. E., Jr., Denton, R., Merrill, E. W.: Measurement of viscosity of biologic fluids by cone plate viscometer. J. Lab. clin. Med. 57, 646–656 (1961).

    PubMed  Google Scholar 

  174. —, Gawronski, T. H., Cox, P. M., Perera, R. D.: Influence of fibrinogen on flow properties of erythrocyte suspensions. Amer. J. Physiol. 207, 1035–1040 (1964).

    PubMed  CAS  Google Scholar 

  175. —, Gawronski, T. H., Cox, P. M., Perera, R. D. Blood flow in the microcirculation of man and the flow properties of blood. Bibl. anat. (Basel) 9, 520–524 (1967).

    PubMed  CAS  Google Scholar 

  176. Schmid-Schönbein, H.: Red cell deformation and fluidity of concentrated red cell suspensions. J. appl. Physiol. 27, 213–217 (1969).

    PubMed  CAS  Google Scholar 

  177. — — Goldstone, J.: Flow behavior of red cells in pathologic sera: existence of a yield shear stress in the absence of fibrinogen. In: Theoretical and clinical hemorheology. Proc. 2nd Int. Conf. Hemorheology, Heidelberg 1969. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  178. Wiedeman, M. P.: Dimensions of blood vessels from the distributing artery to collecting vein. Circulat. Res. 12, 375–378 (1963).

    PubMed  CAS  Google Scholar 

  179. Wilkinson, W. L.: Non-Newtonian fluids: fluid mechanism, mixing and heat transfer. New York-London-Oxford-Paris: Pergamon Press 1960.

    Google Scholar 

  180. Whittacker, S. R. F., Winton, F. R.: The apparent viscosity of blood flowing in the isolated hindlimb of the dog, and its variation with corpuscular concentration. J. Physiol. (Lond.) 78, 339–369 (1933).

    Google Scholar 

  181. Whitmore, R. L.: The interaction of forces in blood flow. Bibl. anat. (Basel) 9, 240–245 (1967).

    PubMed  CAS  Google Scholar 

  182. —A theory of blood flow in small vessels. J. appl. Physiol. 22, 767–771 (1957).

    Google Scholar 

  183. —Rheology of the circulation. Oxford-London: Pergamon Press 1968.

    Google Scholar 

  184. Zierler, K. L.: Circulation times and the theory of indicator dilution methods for determining blood flow and volume. In: Handbook of physiology, sect. 2, Circulation, vol. I (W. F. Hamilton, and P. Dow, eds.). Washington, D.C. 1962.

    Google Scholar 

  185. Zweifach, B. W., Richardson, D. R.: Pressure adjustments in the macro-and microvasculature of the perfused mesentery. Proc. VI. Conf. on Microcirculation (Aalborg 1970). Bibl. anat. (Basel) 11 (in press).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag

About this paper

Cite this paper

Schmid-Schönbein, H., Wells, R.E. (1971). Rheological properties of human erythrocytes and their influence upon the “Anomalous” viscosity of blood. In: Ergebnisse der Physiologie Reviews of Physiology, Volume 63. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0047743

Download citation

  • DOI: https://doi.org/10.1007/BFb0047743

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-05317-0

  • Online ISBN: 978-3-540-36443-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics