Chromatography pp 147-160 | Cite as

Liquid chromatography using cellulosic continuous stationary phases

  • Yiqi Yang
  • Ajoy Velayudhan
  • Christine M. Ladisch
  • Michael R. Ladisch
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 49)


A novel type of continuous stationary phase based on fabric materials is described. This column packing utilizes the continuous character of a cellulose (cotton) stationary phase, and the chemistry of the derivatized forms of the adsorbent, to obtain separations of proteins and small molecules based on cation and anion exchange, hydrophobic interactions, and size. The mechanical stability of the stationary phase facilitates chromatographic velocities in excess of 70 cm min−1. The influence of eluent properties on the adsorption of sample proteins is discussed in this chapter. Sequential stepwise desorption is used to separate 100 μl mixtures of BSA, IgG, β-galactosidase, and insulin in 10 minutes or less, using 10 mm i.d. × 500 mm length columns.


Bovine Serum Albumin Hollow Fiber DEAE Cellulose C2H5 Cell Ethyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reisman HB (1988) Economic analysis of fermentation processes. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Sofer GK, Nystrom L-E (1989) Process chromatography. Academic Press, San DiegoGoogle Scholar
  3. 3.
    Knight P (1989) Bio/Technology 7:777Google Scholar
  4. 4.
    Eble JE, Grob RL, Antle PE, Snyder LR (1987) J Chromatogr 384:254Google Scholar
  5. 5.
    Gibbs SJ, Lightfoot EN (1986) Ind Eng Chem Fundam 25:490CrossRefGoogle Scholar
  6. 6.
    Ding H, Yang M-C, Schisla D, Cussler EL (1989) AIChE J 35:814CrossRefGoogle Scholar
  7. 7.
    Osawa AE, Cooney CL (1989) Paper No. 3, MBTD Division, 198th American Chemical Society National Meeting, Sept 10–15, 1989, Miami Beach, FLGoogle Scholar
  8. 8.
    Sharma SC, Fort JT (1973) J Colloid Interface Sci 43:36CrossRefGoogle Scholar
  9. 9.
    Kiso Y, Jinno K, Nagoshi T (1986) J High Res Chromatogr Commun 9:763Google Scholar
  10. 10.
    Rowland SP, Wade CP, Bertoniere NR (1984) J Appl Polym Sci 29:3349CrossRefGoogle Scholar
  11. 11.
    Bertoniere NR, King WD (1989) Textile Res J 59:114Google Scholar
  12. 12.
    Tiselius A (1955) Angew Chem 67:245Google Scholar
  13. 13.
    Kwapinski JBG (1972) Methodology of immunochemical and immunological research. Wiley-Interscience, New YorkGoogle Scholar
  14. 14.
    McGarry JD (1986) In: Devlin TM (ed) Textbook of biochemistry with clinical correlations. John Wiley, New YorkGoogle Scholar
  15. 15.
    Stryer L (1981) Biochemistry. Freeman, New YorkGoogle Scholar
  16. 16.
    Watson JD, Tooze J, Kurtz DT (1983) Recombinant DNA. Freeman, New YorkGoogle Scholar
  17. 17.
    Rowland SP, Roberts EJ, Wade CP (1969) Textile Res J 39:530Google Scholar
  18. 18.
    Wadsworth LC, Daponte D (1985) In: Nevell TP, Zeronian H (ed) Cellulose chemistry and its applications, Ellis Horwood, Chichester, West Sussex, UKGoogle Scholar
  19. 19.
    Ladisch CM, Yang Y, Velayudhan A, Ladisch MR (1992) Textile Res J 62:36Google Scholar
  20. 20.
    Righetti PG, Caravaggio T (1976) J Chromatogr 127:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Yiqi Yang
    • 1
  • Ajoy Velayudhan
    • 2
  • Christine M. Ladisch
    • 1
  • Michael R. Ladisch
    • 2
    • 3
  1. 1.Department of Consumer Sciences and RetailingPurdue UniversityWest LafayetteUSA
  2. 2.Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Department of Agricultural EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations