Skip to main content

Plate models in chromatography: analysis and implications for scale-up

  • Chapter
  • First Online:
Chromatography

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 49))

Abstract

Detailed chromatographic rate theories from the literature can be used to determine the appropriate plate count for a plate model of linear chromatography so that the bandspreading generated by the detailed rate model is reproduced by the plate model. This process provides a link between the plate count and the physical parameters that cause bandspreading. Each sample component can be assigned an appropriate plate count, thus allowing the accurate simulation of multicomponent separations even for widely differing adsorbates. Analytical solutions are presented for the Craig distribution and the continuous plate model for both finite-pulse elution and frontal chromatography. The Craig model is widely considered unsuitable because it assumes discontinuous flow; it is shown that, for a suitably corrected plate count, the Craig model is as accurate as the continuous-flow plate theory (except for the case of an unretained solute). Direct calculation of effluent histories from these plate models show excellent agreement between themselves and with results from complex rate models available in the literature. Reasonable agreement is also found when the plate models are used a priori to predict experimental scale-up results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

c:

mobile phase concentration, M

Dx :

effective micropore diffusivity, m2s−1

Dy :

effective macropore diffusivity, m2s−1

Dz :

effective axial dispersion coefficient, m2s−1

Ix(a, b):

incomplete beta function, = \(\frac{{\smallint _0^x t^{a - 1} (1 - t)^{b - 1} dt}}{{\smallint _0^1 t^{a - 1} (1 - t)^{b - 1} dt}}\)

J:

plate count in continuous-flow plate model

kf :

external film mass transfer coefficient, m s−1

K di :

dimensionless distribution coefficient; subscript i indicates ith component

K *i :

overall distribution coefficient, =εy+(1−εy)K id

k′:

retention factor, dimensionless

L:

column length, m

M:

input pulse width (discretized)

N:

number of spatial segments in the Craig simulation

Nplate :

plate count

p′i :

probability of ith species being in the mobile phase

P(a, x):

incomplete gamma function, = \(\frac{{\smallint _0^x t^{a - 1} e^{ - t} dt}}{{\smallint _0^\infty t^{a - 1} e^{ - t} dt}}\)

Pex :

microparticle Peclet number, u(2rx)/Dx, dimensionless

Pey :

pellet Peclet number, u(2ry)/Dy, dimensionless

Pez :

bed Peclet number, uL/Dz, dimensionless

\(\overline {Pe}\) :

equivalent Peclet number in the axial-dispersion model

q:

stationary phase concentration, M

q′i :

probability of ith species being bound to the stationary phase

rx :

microparticle radius, m

ry :

pellet radius, m

Sh:

Sherwood number, kf(2ry)/Dy, dimensionless

t:

time, s

tR :

retention time (first moment), s

Δt:

time increment in the Craig simulation, s

u:

superficial velocity, m s−1

v:

mobile phase velocity, m s−1

Vint :

interstitial velocity, m s−1

x:

axial coordinate, m

Δx:

axial space increment, m

F:

frontal chromatography

i:

ith component

j:

jth plate

k:

kth time interval

αi :

coefficient in the continuous-flow plate solution, =Ni/tR,i, s−1

δx :

scaled microparticle radius, rx/L, dimensionless

ψy :

scale pellet radius, ry/L, dimensionless

εx :

micropore porosity, m3 micropores per m3 microparticles

εy :

macropore porosity, m3 macropores per m3 pellet

εz :

bed porosity, m3 bed voids per m3 bed

φ:

volumetric phase ratio, dimensionless

μ0 :

zeroth temporal moment, M s

μ1 :

first temporal moment, s

μ2 :

second temporal moment, s2

\(\bar \mu _2\) :

second central temporal moment, s2

Ï„:

input pulse width, s

References

  1. Giddings JC (1965) Dynamics of chromatography. Marcel Dekker, New York

    Google Scholar 

  2. Yang C-M, Tsao GT (1982) In: Fiechter A (ed) Advances in biochemical engineering, vol 25. Springer, Berlin Heidelberg New York, p 1

    Google Scholar 

  3. Giddings JC (1965) Dynamics of Chromatography. Marcel Dekker, New York

    Google Scholar 

  4. Horvath Cs, Lin H-J (1978) J Chromatogr 149: 43

    CAS  Google Scholar 

  5. Klinkenberg A, Sjenitzer F (1956) Chem Eng Sci 5: 258

    CAS  Google Scholar 

  6. Kucera E (1965) J Chromatogr 19: 237

    Article  CAS  Google Scholar 

  7. van Deemter JJ, Zuiderweg FT, Klinkenberg A (1956) Chem Eng Sci 5: 271

    Google Scholar 

  8. Haynes HW, Sharma PN (1973) AIChE J 19: 1043

    Article  CAS  Google Scholar 

  9. Kubin M (1965) Coll Czech Chem Commun 30: 1104

    Google Scholar 

  10. Haynes HW, Jr (1975) Chem Eng Sci 30: 955

    CAS  Google Scholar 

  11. Ruthven DM (1984) Principles of adsorption and adsorption processes. John Wiley, New York

    Google Scholar 

  12. Furusawa TM, Suzuki M, Smith JM (1976) Catal Rev-Sci Eng 13: 43

    CAS  Google Scholar 

  13. Weber TW, Chakravorti RK (1974) AIChE J 20: 228

    Article  CAS  Google Scholar 

  14. Jury EI (1964) Theory and application of the z-transform method. John Wiley, New Jersey

    Google Scholar 

  15. Uspensky JV (1937) Introduction to mathematical probability. McGraw-Hill, New York

    Google Scholar 

  16. Karger BL, Snyder LR, Horvath CS (1973) An introduction to separation science. John Wiley, New York

    Google Scholar 

  17. Keulemans AIM (1957) Gas chromatography, Reinhold, New York

    Google Scholar 

  18. Abramowitz M, Stegun I (1965) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York

    Google Scholar 

  19. Pearson K (1934) Tables of the incomplete beta function. Biometrika Office, London

    Google Scholar 

  20. Stene S (1945) Arkiv Kemi 18A(18): 1

    Google Scholar 

  21. Fritz JS, Scott DM (1983) J Chromatogr 271: 193

    Article  CAS  Google Scholar 

  22. Mood AM, Graybill FA (1963) Introduction to the theory of statistics. McGraw-Hill, New York

    Google Scholar 

  23. Deans HA, Lapidus L (1960) AIChE J 6: 656

    CAS  Google Scholar 

  24. Glueckauf E (1955) Trans Faraday Soc 51: 34

    CAS  Google Scholar 

  25. Said AS (1956) AIChE J 2: 477

    Article  CAS  Google Scholar 

  26. Yamamoto S, Nakanishi K, Matsuro R (1988) Ion-exchange chromatography of proteins. Marcel Dekker, New York

    Google Scholar 

  27. Mayer SW, Tompkins ER (1947) J Am Chem Soc 69: 2866

    Article  CAS  Google Scholar 

  28. Danckwerts PV (1953) Chem Eng Sci 2: 1

    CAS  Google Scholar 

  29. Rasmuson A (1982) Chem Eng Sci 37: 787

    CAS  Google Scholar 

  30. Rasmuson A, Neretnieks I (1980) AIChE J 26: 686

    Article  CAS  Google Scholar 

  31. Raghavan NS, Ruthven DM (1985) Chem Eng Sci 40: 699

    CAS  Google Scholar 

  32. Carta G (1988) Chem Eng Sci 43: 2877

    CAS  Google Scholar 

  33. Sternberg JC (1966) Adv Chromatogr 2: 205

    CAS  Google Scholar 

  34. Czok M, Guiochon G (1990) Anal Chem 62: 189

    Article  CAS  Google Scholar 

  35. Lin B, Guiochon G (1989) Sep Sci Tech 24: 31

    CAS  Google Scholar 

  36. Eble JE, Grob RL, Antle PE, Cox GB, Snyder LR (1987) J Chromatogr 405: 31

    CAS  Google Scholar 

  37. Snyder LR, Cox GB, Antle PE (1988) J Chromatogr 444: 303

    Article  CAS  Google Scholar 

  38. Jandera P, Churacek J (1985) Gradient elution in column liquid chromatography. Elsevier, Amsterdam

    Google Scholar 

  39. Poppe H, Paanakker J, Bronckhorst M (1981) J Chromatogr 204: 77

    Article  CAS  Google Scholar 

  40. Velayudhan A, Ladisch MR (1991) Anal Chem 63: 2028

    Article  CAS  Google Scholar 

  41. Villermaux J (1981) In: Rodrigues AE, Tondeur D (eds) Percolation processes. Sijthoff and Noordholt, Rockville

    Google Scholar 

  42. Wankat PC (1974) Anal Chem 46: 1400

    Article  CAS  Google Scholar 

  43. Snyder LR (1972) J Chromatogr Sci 10: 369

    CAS  Google Scholar 

  44. Wankat PC, Koo Y-M (1988) AIChE J 34: 1006

    Article  CAS  Google Scholar 

  45. Ladisch MR, Wankat PC (1988) In: Phillips M, Shoemaker SP, Middlekauff RD, Otterbrite M (eds) Impact of chemistry on biotechnology, ACS Symposium Series, No. 362, American Chemical Society, Washington, DC

    Google Scholar 

  46. Lee CK, Yu Q, Kim SU, Wang N-HL (1989) J Chromatogr 484: 29

    Article  CAS  Google Scholar 

  47. Ladisch MR, Hendrickson RL, Firouztale E (1991) J Chromatogr 540: 85

    Article  CAS  Google Scholar 

  48. Wilson EJ, Geankoplis CJ (1966) Ind Eng Chem Fundam 5: 9

    Article  CAS  Google Scholar 

  49. Knuth DE (1969) The Art of computer programming. Addison-Wesley, Reading

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. T. Tsao

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Velayudhan, A., Ladisch, M.R. (1993). Plate models in chromatography: analysis and implications for scale-up. In: Tsao, G.T. (eds) Chromatography. Advances in Biochemical Engineering/Biotechnology, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0046575

Download citation

  • DOI: https://doi.org/10.1007/BFb0046575

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56440-9

  • Online ISBN: 978-3-540-47513-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics