Skip to main content

Large-scale gradient elution chromatography

  • Chapter
  • First Online:
Book cover Bioseparation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 47))

Abstract

The goal of this chapter is to provide practical strategies for large scale separations by gradient elution chromatography. A detailed model has been developed for gradient elution systems considering interference effect, longitudinal diffusion, film mass transfer, intraparticle diffusion, mixing mechanism of the mobile phases, Langmuir-type adsorption and desorption kinetics. This detailed model can be solved by an efficient and robust numerical procedure. Hence, the optimizaton strategy of gradient elution has been developed through the calculation using this detailed model. This detailed model can precisely predict the band position, profile and width at various gradient concentrations, gradient periods, flowrates, and column lengths, in fair agreement with the experimental results. As a result of optimization, an optimal column length may exist. All the input parameters in this model have been either experimentally measured or estimated through empirical correlations. An alternative instrument for large-scale production using gradient elution has been suggested compared with conventional gradient elution instrument. The tolerance of the gradient elution processes to the fluctuation of input parameters has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

constant in Langmuir adsorption equation (-)

A:

mobile phase component which has stronger affinity with the stationary phase

b:

constant in Langmuir adsorption equation (M)−1

B:

mobile phase component which has weak affinity with the stationary phase

C:

concentration (M)

Cb :

eluate concentration (M)

CHY-A:

a-chymotrypsinogen A

Cm :

eluent concentration (M)

CYT-C:

cytochrome C

d:

molecular diameter (cm)

dp:

pore diameter (cm)

D:

Brownian diffusivity (cm2 s−1)

Db :

axial dispersion coefficient (cm2 s−1)

Dp :

intraparticle diffusivity (cm2 s−1)

F:

flowrate (ml s−1)

k:

film mass transfer coefficient (cm s−1)

k′:

capacity factor (-)

L:

column length (cm)

LYS:

lysozyme

Mr:

molecular weight (-)

PeL :

Peclet number of axial dispersion, vLDb −1 (-)

Re:

Reynolds number, 2Rpεbvρη−1 (-)

RIB-A:

ribonuclease A

Rp :

particle radius (cm)

Sc:

Schmidt number, ηr−1D−1 (-)

t:

time (s)

tR :

retention time (s)

tw :

band width (s)

v:

interstitial velocity (cm s−1)

V:

liquid volume (ml)

Vm :

internal volume of the mixer (ml)

Vs :

specific volume (ml g−1)

z:

ZL −1 (-)

Z:

axial coordinate (cm)

Z′:

proportional coefficient (-)

α:

constant coefficient (-)

Β:

constant coefficient (-)

δ:

standard deviation of the Gaussian band (-)

εb :

bed void fraction (-)

εp :

particle porosity (-)

η:

viscosity of the mobile phase (g cm−1 s−1)

γ:

constant coefficient (-)

λ:

ddp −1 (-)

ρ:

density of the mobile phase (g ml−1)

Τ:

tvL−1 (-)

Τimp :

dimensionless time duration of the sample injection (-)

i:

ithcomponent

0:

initial value

References

  1. Jandera P, Churacek J (1985) Gradient elution in column liquid chromatography. Elsevier, Amsterdam

    Google Scholar 

  2. Liteau C, Gocan S (1974) Gradient liquid chromatography. John Wiley, New York

    Google Scholar 

  3. Schoenmakers PJ (1986) Optimization of chromatographic selectivity. Elsevier, Amsterdam

    Google Scholar 

  4. Snyder LR (1980) Gradient elution. In: Horvath C (ed) High-performance liquid chromatography: Advances and prospectives, vol 1. Academic, New York

    Google Scholar 

  5. Verzele M, Daweale C, van Dijck J, van Haver D (1982) J Chromatogr 249: 231

    Article  CAS  Google Scholar 

  6. Knox JH, Pyper HM (1986) J Chromatogr 215: 295

    Google Scholar 

  7. Helfferich FG (1962) Ion exchange. McGraw-Hill, New York

    Google Scholar 

  8. Frenz J, Cs. Horvath Cs (1985) AIChE J 31: 400

    Article  CAS  Google Scholar 

  9. Helfferich FG (1986) J Chromatogr 373: 45–60

    Article  CAS  Google Scholar 

  10. Rhee H-K, Aris R, Amundson NR (1970) Philosophical Transactions Royal Society London 1182: 419

    Google Scholar 

  11. Snyder LR (1968) Principles of adsorption chromatography. Marcel Dekker, New York

    Google Scholar 

  12. Chase HA (1984) C.E.S. 39: 1099

    CAS  Google Scholar 

  13. Muller AJ, Carr P (1984) J Chromatogr 294: 235

    Article  CAS  Google Scholar 

  14. Guiochon G, Ghodbane S, Golshan-Shirazi S, Huang J-X, Katti A, Lin B-C, Ma Z (1989) Talanta. 36: 19

    Article  CAS  Google Scholar 

  15. Arnold FH, Blanch HW (1986) J Chromatogr 355: 13

    CAS  Google Scholar 

  16. Arve BH, Liapis AI (1987) AIChE J 33: 179

    Article  CAS  Google Scholar 

  17. Biyani P, Goochee CF (1988) AIChE J 34: 1747

    Article  CAS  Google Scholar 

  18. Cen PL, Yang RT (1986) AIChE J 32: 1635

    Article  CAS  Google Scholar 

  19. Huang CC, Fair JR (1984) AIChE J 34: 1861

    Google Scholar 

  20. Seshadri S, Deming SN (1984) Anal Chem 56: 1567

    Article  CAS  Google Scholar 

  21. Tsou H-S, Graham EE (1985) AIChE J 31: 1959

    Article  CAS  Google Scholar 

  22. Van Vuuren DS, Stander CM, Glasser D (1984) AIChE J 30: 593

    Google Scholar 

  23. Carta G (1988) C.E.S. 43: 2877

    CAS  Google Scholar 

  24. Furusaki, Haruguchi E, Nozawa T (1987) Bioprocess Engineering 2: 45

    Article  Google Scholar 

  25. Horvath Cs, Lin H-J (1976) J Chromatogr 126: 401

    CAS  Google Scholar 

  26. Horvath Cs, Lin H-J (1978) J Chromatogr 149: 43

    CAS  Google Scholar 

  27. Snyder LR, Kirkland JJ (1979) Introduction to modern liquid chromatography. Wiley, New York

    Google Scholar 

  28. Guiochon G, Golshan-Shirazi S, Jaulmes A (1988) Anal Chem 60: 1865

    Article  Google Scholar 

  29. Klein G (1985) AIChE Symposium Series, 242: 28

    Google Scholar 

  30. Gu T, Tsao GT, Tsai G-J, Ladisch MR (1990) AIChE J 36: 1156

    CAS  Google Scholar 

  31. Ruthven DM (1984) Principles of adsorption and adsorption processes. John Wiley, New York

    Google Scholar 

  32. Sherwood TK, Pigford RL, Wilke RW (1975) Mass transfer. McGraw-Hill, New York

    Google Scholar 

  33. Tokieda T, Tokuda T, Ishida M (1985) Anal Sci 1: 395

    CAS  Google Scholar 

  34. Jandera P, Churacek J, Colin H (1981) J Chromatogr 214: 35

    Article  CAS  Google Scholar 

  35. Klotz IM (1946) Archives Biochem 9: 109

    CAS  Google Scholar 

  36. Mazsaroff I, Varady L, Mouchawar GA, Regnier FE (1990) J Chromatogr 499: 63

    Article  CAS  Google Scholar 

  37. Melander WR, EI Rassi Z, Horvath Cs (1989) J Chromatogr 469: 3

    Article  CAS  Google Scholar 

  38. Srinivasan R, Ruckenstein E (1980) Separation purification methods 9: 267

    CAS  Google Scholar 

  39. Melander WR, Horvath Cs (1977) Archives Biochem Biophys 183: 200

    CAS  Google Scholar 

  40. Roettger BF, Myers JA, Ladisch MR, Regnier FE (1989) Biotechnol Progress 5: 79

    CAS  Google Scholar 

  41. Yamamoto S, Nomura M, Sano Y (1987) AIChE J 33: 1426

    Article  CAS  Google Scholar 

  42. Antia FD, Horvath Cs (1989) J Chromatogr 484: 1

    Article  Google Scholar 

  43. Ghrist BFD, Snyder LR (1988) J Chromatogr 459: 25

    CAS  Google Scholar 

  44. Dolan JW (1988) LC-GC 6: 572

    CAS  Google Scholar 

  45. Weinberger R, Coniglione V (1984) LC 2: 10

    Google Scholar 

  46. Berridge JC (1985) Techniques for the automated optimization of HPLC separations. John Wiley, New York

    Google Scholar 

  47. Huber JFK (1978) Instrumentation for high-performance liquid chromatography. Elsevier, Amsterdam

    Google Scholar 

  48. MacDonald JC (1986) HPLC: Instrumentation and applications. International Scientific Communications, Fairfield, Connecticut

    Google Scholar 

  49. Billiet HA, Keehnen PD, de Galan L (1979) J Chromatogr 185: 515

    CAS  Google Scholar 

  50. Erni, Frei RW (1978) Res Dev 149: 56

    Google Scholar 

  51. Martin M, Guiochon G (1978) In: Huber JFK (ed) Instrumentation for high-performance liquid chromatography, Chapter 3. Elsevier, Amsterdam

    Google Scholar 

  52. Pao RHF (1961) Fluid mechanics. John Wiley, New York

    Google Scholar 

  53. Scott RP (197) J Chromatogr Sci 9: 385

    Google Scholar 

  54. Bio-Rad Laboratories Bio-Rad Model 385 Gradient Former Instruction Manual. Richmond, California

    Google Scholar 

  55. Truei YH (1991) PhD Dissertation. Purdue University, West Lafayette, Indiana

    Google Scholar 

  56. Skidmore GL, Hormann BJ, Chase HA (1990) J Chromatogr 498: 113

    Article  CAS  Google Scholar 

  57. Heinitz ML, Kennedy L, Kopaciewicz W, Regnier FE (1988) J Chromatogr 443: 173

    Article  CAS  Google Scholar 

  58. Geng X, Regnier FE (1984) J Chromatogr 296: 15

    CAS  Google Scholar 

  59. Kopaciewicz W, Regnier FE (1983) Anal Chem 133: 251

    CAS  Google Scholar 

  60. Pitt WW Jr (1976) J Chromatogr Sci 14: 396

    CAS  Google Scholar 

  61. Aguilar MI, Hodder AN, Hearn TW (1985) J Chromatogr 327: 115

    Article  CAS  Google Scholar 

  62. Hearn MTW, Grego B (1983) J Chromatogr 255: 125

    Article  CAS  Google Scholar 

  63. Mazsaroff I, Cook S, Regnier FE (1988) J Chromatogr 443: 119

    Article  CAS  Google Scholar 

  64. Jessissen HP (1976) Hoppe Seler's Z Physiol Chem 357: 1727

    Google Scholar 

  65. Afeyan NB, Gordon NF, Mazsaroff J, Varady L, Fulton SP, Yang YB, Regnier FE (1985) J Chromatogr 519: 1

    Google Scholar 

  66. Yau WW, Kirkland JJ, Bly DD (1979) Modern size exclusion liquid chromatography. Wiley, New York

    Google Scholar 

  67. Chung SF, Wen CY (1968) AIChE J 14: 857

    Article  CAS  Google Scholar 

  68. Wakao N, Oshima T, Yagi S (1958) Kagaku Kagaku 22: 780

    CAS  Google Scholar 

  69. Cantor and Schimmel, 1980

    Google Scholar 

  70. Cooper AR, Barrall II EM (1973) J Applied Polymer Sci 17: 1253

    CAS  Google Scholar 

  71. Regnier FE, Mazsaroff I (1987) Biotechnol Progress 3: 22

    CAS  Google Scholar 

  72. Katti AM, Guiochon (1988) J Chromatogr 449: 25

    Article  CAS  Google Scholar 

  73. Wankat PC, Koo Y-M (1988) AIChE J 34: 1006

    Article  CAS  Google Scholar 

  74. Gibbs SJ, Lightfoot EN (1986) I&EC Fundam 25: 490

    CAS  Google Scholar 

  75. Golshan-Shirazi G, Lin B, Guiochon G (1989) Anal Chem 61: 1960

    CAS  Google Scholar 

  76. Tice PA, Mazsaroff I, Lin NT, Regnier FE (1987) J Chromatogr 410: 43

    Article  CAS  Google Scholar 

  77. Jandera P, Churacek J (1980) J Chromatogr 192: 19

    CAS  Google Scholar 

  78. Armstrong DW, Boehm RE (1984) J Chromatogr Sci 22: 378

    CAS  Google Scholar 

  79. Kennedy L, Kopaciewicz W, Regnier FE (1986) J Chromatogr 359: 73

    Article  CAS  Google Scholar 

  80. D'Agostino G, O'Hare MJ, Mitchell F, Salomon T, Verllon F (1988) Chromatographia 25: 343

    Google Scholar 

  81. Markowski W, Golkiewicz W (1988) Chromatographia 25: 339

    CAS  Google Scholar 

  82. Martin M (1988) J Liquid Chromatogr 11: 1809

    CAS  Google Scholar 

  83. Merengo E, Gennaro MC, Baiocchi C, Bertolo P (1988) Chromatographia 25: 413

    Google Scholar 

  84. Kang K, McCoy BJ (1989) Biotechnol Bioeng 33: 786

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. T. Tsao

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Truei, YH., Gu, T., Tsai, GJ., Tsao, G.T. (1992). Large-scale gradient elution chromatography. In: Tsao, G.T. (eds) Bioseparation. Advances in Biochemical Engineering/Biotechnology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0046196

Download citation

  • DOI: https://doi.org/10.1007/BFb0046196

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55551-3

  • Online ISBN: 978-3-540-47211-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics