Skip to main content

Die Gleichgewichtsform von Kristallen und die Keimbildungsarbeit bei der Kristallisation

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 44))

Abstract

Chap. 1 gives a historical review of most important papers, dealing with the equilibrium form of crystals and the free energy of formation of a critical nucleus.

The equilibrium form (Chap. 2) has been determined thermodynamically by means of the Gibbs-Curie-equation (Eq. 2.1) and the Gibbs-Wulff-theorem (Eq. 2.2). The kinetic derivation leads to the expression of Stranski and Kaischew (Eq. 2.5) concluding that the mean work of separation for the outermost lattice-layer of all three-dimensional equilibrium crystal faces is of the same value and decreases with increasing supersaturation. This is valid also for the two-dimensional nucleus (Eq. 2.7–2.10).

One can estimate the free energy of nucleation following Gibbs and Volmer (Eq. 2.13) by means of the specific free surface energy and the supersaturation or from the amount of the work of separation of a single unit and the mean work of separation following Stranski and Kaischew (Eq. 2.14).

In a one-component system (Chap. 3) it has to be distinguished between crystals with non-polar-bond, ionic crystals and crystals with a mixed type of bond. The surface energies can be computed vectorial, if the radius of action of the binding-force is limited. With that method the coordination numbers for the single lattice-layer can be evaluated.

The equilibrium forms of crystals with non-polar bonds (Chap. 3a) have been summarized in Table 1a for the simple-cubic, face-centered-cubic, body-centered-cubic, diamond-, β-tin- and Se-Te-lattice and also for the hexagonal close packing of spheres or ellipsoids. It is distinguished between the equilibrium forms for ϕ1>0, ϕ2, ϕ3 ... = 0; ϕ1, ϕ2>0; ϕ3, ϕ4 ... = 0; ... (ϕi = work of separation for the ith-nearest neighbour). The number of the equilibrium-form-faces increases with the radius of action of the binding-force. For jodine it is shown that the faces of the equilibrium-form can be calculated by the vector products of bond vectors. Evidence for the Stranski and Kaischew-conclusion can be gained for crystals with non-polar bonds through the bond vectors: Every face of the equilibrium form of an ideal crystal grows via the two-dimensional nucleus. The surface energies for crystals of the NaCl-type (Chap. 3b) are calculated by means of the NaCl-octupol-lattice (Fig. 3), which permits to evaluate the surface energies of coarsened {h k l}-surfaces. In Table 1 b the faces of equilibrium form of the ionic crystals are compiled.

On the basis of arsenolite, which crystallizes in the diamond-lattice, it was shown in Chap. 3 c, that the work of separation from special neighbours may be less than zero for crystals with polar intramolecular bonds. In this way it is possible to interpret the growth-form, which consists of {111} and {100}.

Concerning surface structures (Chap. 4) it may be distinguished between roughness and coarsening. A small number of surface vacancies (n L ) and of Ad-units (n Ad) on the surface compared to the total number (n o) will be characterized as roughness. The thermodynamic treatment of coarsening is given for the model of the two dimensional simple square lattice. The free ledge energy ρh1 (Eq. 4.12; Fig. 10) and the degree of equilibrium coarsening x g (Eq. 4.13; Fig. 10) are computed. If the ledge energy increases with coarsening (crystals with non polar bonds), x g will also increase with temperature. For crystals with polar bonds the ledge energy of non-equilibriumform-ledges decreases with the coarsening and x g with the temperature.

For the two-component systems (Chap. 5) the equilibrium forms and the free energies of nucleation have been investigated for a one-component crystal on a heterogeneous substrate, for a one-component crystal with adsorption of impurities on the faces and for a mixed crystal.

On the basis of Stranski-Krastanow-mechanism in chapter 5a a simple cubic crystal on a structureless surface in a heterogeneous substrate is considered. The crystal is situated on a flat substrate (Index 1K, Fig. 12), in a concave edge (Index 2K), in a concave corner (Index 3K), at a step (Index StK; Fig. 13) or in a concave corner of two crossing steps (Index DStK). The relations for the nucleus dimension (ledge dimension a ik, b ik, c ik) and the free energy of formation of a nucleus (A ik, i = 1,2,3, St, DSt; Eq. 5.2–5.6) are given. It is shown, that in this case, too, the mean work of separation is the same for all faces.

The calculations for the two-dimensional free energy of nucleation (Index K2) lead to four districts (Fig. 14), where either two-dimensional nuclei grow in monomolecular layer (A), or only three-dimensional nuclei (B), or two- and three-dimensional nuclei (C), or only two-dimensional nuclei (D) are possible. The dependence of the free energy of nucleation and of the effect of decoration (F i = A ik/A K; A K = free energy of nucleation, homogeneous) upon the contact angle α is investigated for a spherical nucleus (Eq. 5.8a, A.1–A.4; Fig. 17), a cube (Eq. 5.10, 5.13, 5.14; Fig. 17, 19, 20), an octahedron (Eq. 5.11; Fig. 18) and a cube-octahedron (Eq. 5.12; Fig. 18).

The adsorption of impurities (Chap. 5b) is treated by means of the Stranski-model (Fig. 21). Equations for the specific free surface energies (Eq. 5.18) and the specific free ledge energies (Eq. 5.19) for the simple cube lattice in dependence on the coverage degree ϑ are given. By these equations the conditions (5.20) of the stability of the single faces are determined. The dependence of coarsening (Eq. 5.22; Fig. 26) and its influence on the free-ledge-energy (Eq. 5.21; Fig. 27) and the adsorption-isotherms (Eq. 5.23; Fig. 25) have been investigated.

For the determination of the equilibrium form of mixed crystals (Chap. 5c) the conditions of a regular mixture are set up. The free energy of the crystal (Eq. 5.26) with N0 surface sites, n surface layers and Nv units in the volume phase, the composition of the surface layers (Eq. 5.30, 5.32; Fig. 32), and the free surface energy (Eq. 5.34, 5.35; Fig. 28) are calculated. In the case of the cubic face centered lattice it is shown, that at interaction between first and second next neighbours besides {100}, {110} and {111} (the faces of the equilibrium form in a one-component-crystal) also {210}, {310}, {311}, {321}, {331}, {531}, {731} and {931} are present in the equilibrium form of a mixed crystal (Fig. 33). In a regular mixture not only the composition of the surface layers with unoccupied coordination sites but also the next lattice-layers are different from the composition of the volume (Fig. 32). If 2ϕAB ≧ ϕAA + ϕBB, in all surface layers enrichment of the surface active component happens. In the opposite case in a part of the layers a defect of the surface-active-component occurs. While for 2ϕAB ≦ ϕAA + ϕBB the edges and corners are sharp in the equilibrium form, they are rounded off for 2ϕAB> >ϕAABB, because besides the above mentioned faces all other ones — if only in small extension — are present in the equilibrium form.

In the appendix (A.I–A.IV) some mathematical derivations are compiled.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Gibbs, J. W.: Trans. Conn. Acad. 3, 343 (1876/78)

    Google Scholar 

  2. -: The Scientific Paper. Vol. 1. New York: Dover Publ. Inc. 1961

    MATH  Google Scholar 

  3. Curie, P.: Bull. Soc. Franc. Mineral. Crist. (8), 145 (1885); Oeuvres, 153

    Google Scholar 

  4. Wulff, G.: Z. Krist. Mineral. 34, 449 (1901)

    Google Scholar 

  5. Liebmann, H.: Z. Krist. Mineral. Petrog., Abt. A, 53, 171 (1914)

    Google Scholar 

  6. Volmer, M.: Kinetik der Phasenbildung. Dresden u. Leipzig: Theodor Steinkopff 1939

    Google Scholar 

  7. v. Laue, M.: Z. Krist., Mineral. Petrog., Abt. A 105, 124 (1944)

    Google Scholar 

  8. Dinghas, A.: Z. Krist., Mineral. Petrog., Abt. A 105, 304 (1943/44)

    Google Scholar 

  9. Knacke, O., u. I. N. Stranski: Ergeb. Exakt. Naturw. 26, 383 (1952)

    Google Scholar 

  10. Ehrenfest, P.: Ann. Physik 48, 360 (1915)

    Article  ADS  Google Scholar 

  11. Born, M., u. O. Stern: Sitzber. preuß. Akad. Wiss., Physik.-Math. Kl., 48, 901 (1919)

    Google Scholar 

  12. Yamada, M.: Physik. Z. 24, 364 (1923); 25, 52 (1924)

    Google Scholar 

  13. Volmer, M., u. I. Estermann: Z. Physik 7, 13 (1921)

    Article  ADS  Google Scholar 

  14. -, Physik. Z. 22, 646 (1921)

    Google Scholar 

  15. Brandes, H.: Z. Physik. Chem. (Leipzig) 126, 196 (1927)

    Google Scholar 

  16. Stranski, I. N.: Z. Physik. Chem. (Leipzig) 136, 259 (1928)

    Google Scholar 

  17. -: Z. Physik. Chem. (Leipzig) Abt. B11, 342 (1931)

    Google Scholar 

  18. -: u. R. Kaischew: Z. Physik. Chem. (Leipzig), Abt. B26, 100, 114, 312 (1934)

    Google Scholar 

  19. -: u. R. Kaischew: Physik. Z. 36, 393 (1935); Ann. Physik (5) 23, 330 (1935)

    Google Scholar 

  20. Volmer, M., u. A. Weber: Z. Physik. Chem. (Leipzig) 119, 277 (1926)

    Google Scholar 

  21. Kaischew, R., u, I. N. Stranski: Z. Physik. Chem. (Leipzig), Abt. B26, 317 (1934)

    Google Scholar 

  22. Becher, R., u. W. Döring: Ann. Physik (5) 24, 719 (1935)

    Article  ADS  Google Scholar 

  23. Zeldowich, J.: Zh. Eksperim. i Teor. Fiz. 12, 525 (1942)

    Google Scholar 

  24. Lothe, J., and G. M. Pound: J. Chem. Phys. 36, 2080 (1962)

    Article  ADS  Google Scholar 

  25. Stranski, I. N., u. D. Totomanov: Z. Physik. Chem. (Leipzig), Abt. A163, 399 (1933)

    Google Scholar 

  26. Frenkel, J.: Kinetische Theorie der Flüssigkeiten. Berlin: Deut. Verlag Wiss. 1957

    MATH  Google Scholar 

  27. Burton, W. K., N. Cabrera, and F. C. Frank: Phil. Trans. Roy. Soc. London, Ser. A243, 299 (1951)

    Article  ADS  Google Scholar 

  28. Jackson, K. A.: Liquid metals and solidification. S. 174. Cleveland, Ohio: Amer. Soc. Metals 1958

    Google Scholar 

  29. Mullins, W. W.: Acta Met. 7, 746 (1959)

    Article  Google Scholar 

  30. Dunning, W. J.: J. Phys. Chem. 67, 2023 (1963)

    Article  Google Scholar 

  31. Stranski, I. N., W. Gans u. H. Rau: Ber. Bunsenges. Physik. Chem. 67, 965 (1963)

    Article  Google Scholar 

  32. Mutaftschiew, B.: Compt. Rend. 259, 572 (1964)

    Google Scholar 

  33. -: Colloq. Intern. Centre Nat. Rech. Sci. (Paris) 152, 231 (1965)

    Google Scholar 

  34. Kern, R., et B. Mutaftschiew: Compt. Rend. 260, 533 (1965)

    Google Scholar 

  35. Heyer, H., H. Karge et G. M. Pound: Colloq. Intern. Centre Nat. Rech. Sci. (Paris) 152, 255 (1965)

    Google Scholar 

  36. ---: Z. Physik. Chem. (Frankfurt) 53, 294 (1967)

    Article  Google Scholar 

  37. Lacmann, R.: Colloq. Intern. Centre Nat. Rech. Sci. (Paris) 152, 195 (1965)

    Google Scholar 

  38. Stranski, I. N.: Naturwissenschaften 30, 425 (1942); Z. Physik 119, 22 (1942)

    Article  ADS  Google Scholar 

  39. -: Z. Physik. Chem. (Leipzig), Abt. A142, 453 (1929)

    Google Scholar 

  40. -Z. Physik. Chem. (Leipzig). Bodenstein-Festband 230 (1931)

    Google Scholar 

  41. -: u. K. Kuleliew: Z. Physik. Chem. (Leipzig), Abt. A142, 467 (1929)

    Google Scholar 

  42. -: u. L. Krastanow: Sitzber. Akad. Wiss. Wien, Math.-Naturwiss. KL, Abt. IIb, 146, 797 (1938); Monatsh. Chem. 71, 351 (1938); Neues Jahrb. Mineral. Geol. Paläontol., Beilage-Bd., (Abhandl.) Abt. A 74, 305 (1938)

    Google Scholar 

  43. Kaischew, R.: Bull. Acad. bulg. Sci., Ser. Phys. 1, 100 (1950)

    Google Scholar 

  44. -Arbeitstagung Festkörperphysik, Dresden, 1952, S. 81

    Google Scholar 

  45. Lacmann, R.: Z. Krist. 116, 13 (1961)

    Article  Google Scholar 

  46. Stranski, I. M.: Bull. Soc. Franc. Mineral. Crist. 79, 359 (1956); Tercera reunion internacional sobre reactividad de los solidos. Madrid, 1956, Seccion I, S. 657

    Google Scholar 

  47. -: VDI-Ber. 20, 5 (1957)

    Google Scholar 

  48. Knacke, O., u. I. N. Stranski: Z. Elektrochem. 60, 816 (1956)

    Google Scholar 

  49. Lacmann, R., and I. N. Stranski: Growth and perfection of crystals. S. 427. R. H. Doremus, B. W. Roberts, and D. Turnbutt New York: John Wiley u. Sons Inc., 1958

    Google Scholar 

  50. Kaischew, R., u. B. Mutaftschiew: Ber. Chem. Inst. Bulg. Akad. Wiss. 7, 145 (1959)

    Google Scholar 

  51. Lacmann, R.: Z. Krist. 112, 169 (1959)

    Article  Google Scholar 

  52. Honigmann, B.: Gleichgewichts-und Wachstumsform von Kristallen. Darmstadt: Dr. Dietrich Steinkopff Verlag 1958

    Book  Google Scholar 

  53. Hirth, J. P., and G. M. Pound: Condensation and evaporation. Nucleation and growth kinetics. Oxford: Pergamon Press 1963

    Google Scholar 

  54. Stranski, I. N. u. R. Kaischew: Z. Physik. Chem. (Leipzig), Abt. B35, 427 (1937)

    Google Scholar 

  55. -, Z. Krist. Mineral. Petrog., Abt. A105, 91 (1943/44)

    Google Scholar 

  56. Honigmann, B., K. Moliere u. I. N. Stranski: Ann. Physik (6) 1, 181 (1947)

    Article  ADS  Google Scholar 

  57. Kossel W.: Nachr. Akad. Wiss. Göttingen Math.-Physik. Kl., 1927, 135

    Google Scholar 

  58. Stranski, I. N.: Z. Physik. Chem. (Leipzig), Abt. B38, 451 (1938)

    Google Scholar 

  59. -: Ber. Deut. Chem. Ges. A72, 141 (1939)

    Article  Google Scholar 

  60. Kaischew, R., L. Keremidtschiew u. I. N. Stranski: Z. Metallk. 34, 201 (1942)

    Google Scholar 

  61. Heyer, H.: Dissert., Freie Universität, Berlin, 1962

    Google Scholar 

  62. -J. Phys. Chem. Solids, Suppl. 265 (1966)

    Google Scholar 

  63. Kaischew, R., E. Budewski u. J. Malinowski: Compt. Rend. Acad. Bulgare Sci. 2, 29 (1949)

    Google Scholar 

  64. Budewski E. u. V. Bostanov: Bulgar. Akad. Wiss., Bull. 2, 65 (1962)

    Google Scholar 

  65. Budurov, St., u. N. Stojcev: Ann. Univ. Sofia, Fac. Chimie. 56, 87 (1961/62)

    Google Scholar 

  66. -, u. N. Stojcev: Compt. Rend. Acad. Bulgare Sci. 5, 529 (1963)

    Google Scholar 

  67. Rau, H.: Dissert., Technische Universität, Berlin, 1963

    Google Scholar 

  68. Kaischew, R., u. Chr. Nanev: Phys. Stat. Sol. 10, 779 (1965)

    Article  ADS  Google Scholar 

  69. Peneva, S., u. S. Budurov: Phys. Stat. Sol. 9, 435 (1965)

    Article  ADS  Google Scholar 

  70. Honigmann, B.: Z. Physik. Chem. (Frankfurt) 53, 229 (1967)

    Article  Google Scholar 

  71. Kaischew, R., u. B. Mutaftschiew: Bulgar. Akad. Wiss., Bull., 2, 5 (1962)

    Google Scholar 

  72. Lacmann, R.: Z. Naturforsch. 17a, 808, 812 (1962)

    ADS  Google Scholar 

  73. Stranski, I. N., u. R. Kaischew: Z. Krist. Mineral. Petrog., Abt. A78, 373 (1931)

    Google Scholar 

  74. -, u. L. Krastanow: Z. Krist. Mineral. Petrog., Abt. A83, 155 (1932)

    Google Scholar 

  75. -, R. Kaischew u. L. Krastanow: Z. Krist. Mineral. Petrog., Abt. A 88, 325 (1934)

    Google Scholar 

  76. -, u. R. Suhrmann: Z. Krist. Mineral. Petrog., Abt. A105, 481 (1943/44)

    Google Scholar 

  77. -, Discussions Faraday Soc. 5, 13 (1949)

    Article  Google Scholar 

  78. Wolff, G. A., and J. G. Gualtieri: Am. Mineralogist 47, 562 (1962)

    Google Scholar 

  79. Drechsler, M., et H. Liepack: Colloq. Intern. Centre Nat. Rech. Sci. (Paris) 152, 49 (1965)

    Google Scholar 

  80. Hartman, P., u. W. G. Perdok: Acta Cryst. 8, 49, 521, 525 (1955)

    Article  Google Scholar 

  81. Wolff, G. A.: Z. Physik. Chem. (Frankfurt) 31, 1 (1962)

    Article  Google Scholar 

  82. Lacmann, R.: Acta Cryst. 13, 606 (1960)

    Article  Google Scholar 

  83. Franke, G.: Dipl.-Arbeit, Freie Universität, Berlin, 1965

    Google Scholar 

  84. -: u. H. Heyer: Ber. Bunsenges. Physik. Chem. 70, 708 (1966)

    Google Scholar 

  85. Stranski, I. N.: Z. Physik. Chem. (Leipzig), Abt. B17, 127 (1932)

    Google Scholar 

  86. Brandes, H., u. M. Volmer: Z. Physik. Chem. (Leipzig), Abt. A155, 466 (1931)

    Google Scholar 

  87. Hille, M., H. Rau u. J. Schlipf: Z. Elektrochem. 63, 285 (1959)

    Google Scholar 

  88. -, u. I. N. Stranski: Z. Elektrochem. 65, 789 (1961)

    Google Scholar 

  89. Bradistilov, G., u. I. N. Stranski: Z. Krist. Mineral. Petrog., Abt. A103, 1 (1940/41)

    Google Scholar 

  90. Kleber, W.: Zentr. Mineral. Geol., Abt. A 1938, 353

    Google Scholar 

  91. Wolff, G. A.: Am. Mineralogist 41, 60 (1956)

    Google Scholar 

  92. Lacmann, R.: Ber. Bunsenges. Physik. Chem. 67, 632 (1963)

    Article  Google Scholar 

  93. Bozorth, R. M.: J. Am. Chem. Soc. 45, 1621 (1923)

    Article  Google Scholar 

  94. Almin, K. E., och A. Westgren: Arkiv Kemi Mineral. Geol., Ser. B., 15, 1 (1942)

    Google Scholar 

  95. Pauling, L.: Die Natur der chemischen Bindung. Weinheim/Bergstraße: Verlag Chemie, 1962

    Google Scholar 

  96. Wolff, G. A., u. J. D. Broder: Acta Cryst. 12, 313 (1959)

    Article  Google Scholar 

  97. Stranski, I. N.: Z. Anorg. Allg. Chem. 252, 241 (1944)

    Article  Google Scholar 

  98. Lacmann, R.: Sitzung Dechema-Arbeitsausschuß „Galvanische Überzüge”, Frankfurt/Main, 1964

    Google Scholar 

  99. Kaischew, R., and B. Mutaftschiew: Electrochim. Acta 10, 643 (1965)

    Article  Google Scholar 

  100. Bassett, G. A.: Phil. Mag. 3, 1042 (1958)

    Article  ADS  Google Scholar 

  101. -: J. W. Menter, and D. W. Pashley: Discussions Faraday Soc. 28, 7 (1959)

    Article  Google Scholar 

  102. Bethge, H.: Surface Sci. 3, 33 (1964)

    Article  ADS  Google Scholar 

  103. -: et M. Krohn: Colloq. Intern. Centre Nat. Rech. Sci. (Paris) 152, 391 (1965)

    Google Scholar 

  104. -: u. K. W. Keller: Optik 23, 462 (1965/66)

    Google Scholar 

  105. -: u. M. Klaua: Ann. Physik (7) 17, 462 (1966)

    Google Scholar 

  106. Chakraverty, B. K., u. G. M. Pound: Acta Met. 12, 851 (1964)

    Article  Google Scholar 

  107. Bogdandy, L. v., W. Dick u. I. N. Stranski: Arch. Eisenhüttenw. 29, 329 (1958)

    Article  Google Scholar 

  108. Sella, C., P. Conjeaud u. J. J. Trillat: IV. Internationaler Kongreß für Elektronenmikroskopie, I, 508. G. Möllenstedt, H. Niehrs, E. Ruska Berlin-Göttingen-Heidelberg: Springer-Verlag 1960

    Google Scholar 

  109. ---: Compt. Rend. 249, 1987 (1959)

    Google Scholar 

  110. Rhodin, T. N., and D. Walton: Metal Surfaces. Am. Soc. Metals, Metals Park, Ohio, 1963, S. 259

    Google Scholar 

  111. Rhodin, T. N., and D. Wallon: Single-crystal films, S. 31. M, H. Francombe, and H. Sato: New York: Pergamon-Press 1964

    Google Scholar 

  112. Walton, D.: Phil. Mag. (8) 7, 1671 (1962); J. Chem. Phys. 37, 2182 (1962)

    Article  ADS  Google Scholar 

  113. Kaischew, R., u. B. Mutaftschiew: Ber. Chem. Inst. Bulgar. Akad. Wiss. 7, 177 (1959)

    Google Scholar 

  114. -, u. B. Mutaftschiew: Ber. Physik.-Chem. Inst. Bulg. Akad. Wiss. 3, 5 (1963)

    Google Scholar 

  115. Miloshev, G.: Compt. Rend. Acad. Bulgare Sci. 16, 505, 597, 701 (1963)

    Google Scholar 

  116. Bliznakov, G.: Fortschr. Mineral. 36, 149 (1958)

    Google Scholar 

  117. Turnbull, D., and B. Vonnegut: Ind. Eng. Chem. 44, 1292 (1952)

    Article  Google Scholar 

  118. Pangarov, N. A.: Electrochim. Acta 7, 139 (1962)

    Article  Google Scholar 

  119. -: Electrochim. Acta 9, 721 (1964)

    Article  Google Scholar 

  120. Bliznakov, G., and S. Delineschew: Phys. Stat. Sol. 13, 101 (1966)

    Article  ADS  Google Scholar 

  121. Kern, R.: Bull. Soc. Franc. Mineral. Crist. 76, 325, 391 (1953)

    Google Scholar 

  122. Herzfeld, K. F.: Colloid Sympos. Monogr. 7, 51 (1930)

    Google Scholar 

  123. Bliznakov, G., u. E. Kirkova: Z. Physik. Chem. (Leipzig) 206, 271 (1957)

    Google Scholar 

  124. Gjostein, N. A.: Acta Met. 11, 957, 969 (1963)

    Article  Google Scholar 

  125. Honigmann, B.: Collq. Intern. Centre Mat. Rech. Sci. (Paris) 152, 141 (1965)

    Google Scholar 

  126. Lacmann, R., u. G. M. Pound: Z. Physik. Chem. (Frankfurt) 53, 143 (1967)

    Article  Google Scholar 

  127. Guggenheim, E. A.: Trans. Faraday Soc. 41, 150 (1945)

    Article  Google Scholar 

  128. Defay, R., and I. Prigogine: Trans. Faraday Soc. 46, 199 (1950)

    Article  Google Scholar 

  129. Bellemans, A., and J. Stecki: Mol. Phys. 3, 203 (1960)

    Article  ADS  Google Scholar 

  130. Döring, W., u. K. Neumann: J. Physik. Chem. (Leipzig), Abt. A186, 193, 203 (1940)

    Google Scholar 

  131. Becher, R.: Ann. Physik (5) 32, 128 (1938)

    Article  Google Scholar 

  132. Kaischew, R.: Fortschr. Mineral, 38, 7 (1960)

    Google Scholar 

  133. Sundquist, B. E.: Acta Met. 12, 67, 585 (1964)

    Article  Google Scholar 

  134. Haase, R.: Thermodynamik der Mischphasen. Berlin-Göttingen-Heidelberg: Springer-Verlag 1956

    Book  MATH  Google Scholar 

  135. Meyer zur Capetten, W.: Integraltafeln. Berlin-Göttingen-Heidelberg: Springer-Verlag 1950

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag

About this chapter

Cite this chapter

Lacmann, R. (1968). Die Gleichgewichtsform von Kristallen und die Keimbildungsarbeit bei der Kristallisation. In: Höhler, G. (eds) Springer Tracts in Modern Physics, Volume 44. Springer Tracts in Modern Physics, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0045482

Download citation

  • DOI: https://doi.org/10.1007/BFb0045482

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-04338-6

  • Online ISBN: 978-3-540-35934-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics