Skip to main content

Computational geometry with restricted orientations

  • Computational Geometry
  • Conference paper
  • First Online:
System Modelling and Optimization

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 113))

Abstract

Given a set O of orientations (or angles) a line, ray, or line segment, in the plane, is said to be O-oriented if the smallest angle it makes with a horizontal line is in O. We are interested in planar objects that are formed by O-oriented lines, rays, and line segments; we say that they are O-oriented objects. Our interest in this area stems from the observation that orthogonal objects can, in general, be handled more efficiently than arbitrarily-oriented ones. As we demonstrate, as far as convexity is concerned O-oriented geometry bridges the gap between orthogonal geometry and arbitrarily-oriented geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender, E. A.; “Convex n-ominoes”, Discrete Mathematics, 8, 219–226 (1974).

    Google Scholar 

  2. Cohn, P.M.; Universal Algebra, Harper & Row, New York, 1965.

    Google Scholar 

  3. Edelsbrunner, H.; Intersection Problems in Computational Geometry, Doctoral Dissertation, University of Graz, 1982.

    Google Scholar 

  4. Grünbaum, B.; Convex Polytopes, Wiley-Interscience, New York, 1967.

    Google Scholar 

  5. Güting, R. H.; Conquering Contours: Efficient Algorithms for Computational Geometry, Doctoral Dissertation, Universität Dortmund, 1983.

    Google Scholar 

  6. Jamison-Waldner, R.E.; “A Perspective on Abstract Convexity: Classifying Alignments”, Lecture Notes in Pure and Applied Mathematics, 76, 113–150, (1982).

    Google Scholar 

  7. Klee, V.; “What is a Convex Set?”, American Mathematical Monthly, 78, 616–631 (1971).

    Google Scholar 

  8. Levi, F.W.; “On Helly's Theorem and the Axioms of Convexity”, Journal of the Indian Mathematical Society, 15, 65–76 (1951).

    Google Scholar 

  9. Ottmann, Th., Soisalon-Soininen, E., and Wood, D.; “On the Definition and Computation of Rectilinear Convex Hulls”, Information Sciences, 33, 157–171 (1984).

    Google Scholar 

  10. Preparata, F.P., Shamos, M. I.; Computational Geometry, Springer-Verlag, New York, 1985.

    Google Scholar 

  11. Rawlins, G.J.E.; Explorations in Restricted-Orientation Geometry, Doctoral Dissertation, University of Waterloo, 1987.

    Google Scholar 

  12. Rawlins, G.J.E. and Wood, D.; “Optimal Computation of Finitely-Oriented Convex Hulls”, Information and Computation, 72, 150–166 (1987).

    Google Scholar 

  13. Rawlins, G.J.E. and Wood, D.; “Convexity Spaces: A Decomposition Theorem”, unpublished manuscript, 1988.

    Google Scholar 

  14. Rosenfeld, A. and Kak, A. C.; Digital Picture Processing, Academic Press, New York, 1976.

    Google Scholar 

  15. Sack, J.-R.; Rectilinear Computational Geometry, Doctoral Dissertation, Carleton University, 1984.

    Google Scholar 

  16. Shamos, M. I.; Problems in Computational Geometry, Doctoral Dissertation, Yale University, 1978.

    Google Scholar 

  17. Sierksma, G.; “Extending a Convexity Space to an Aligned Space”, Indagationes Mathematicae, 46, 429–435 (1984).

    Google Scholar 

  18. Toussaint, G. T.; “Pattern Recognition and Geometrical Complexity”, in Proceedings of the International Conference on Pattern Recognition, 2, 1324–1347 (1980).

    Google Scholar 

  19. Toussaint, G. T. and Sack, J.-R.; “Some New Results on Moving Polygons in the Plane”, in Proceedings of the Robotic Intelligence and Productivity Conference, Detroit, 158–164 (1983).

    Google Scholar 

  20. Widmayer, P., Wu, Y. F., Schlag, M. D. F. and Wong, C. K.; “On Some Union and Intersection Problems for Polygons with Fixed Orientations”, Computing, 36, 183–197 (1986).

    Google Scholar 

  21. Widmayer, P., Wu, Y. F. and Wong, C. K.; “Distance Problems in Computational Geometry for Fixed Orientations”, in Proceedings of the ACM Symposium on Computational Geometry, Baltimore, 186–195 (1985).

    Google Scholar 

  22. Wood, D.; “An Isothetic View of Computational Geometry”, in Computational Geometry (Toussaint, G., ed.). North Holland, Amsterdam, 429–459 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masao Iri Keiji Yajima

Rights and permissions

Reprints and permissions

Copyright information

© 1988 International Federation for Information Processing

About this paper

Cite this paper

Rawlins, G.J.E., Wood, D. (1988). Computational geometry with restricted orientations. In: Iri, M., Yajima, K. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0042806

Download citation

  • DOI: https://doi.org/10.1007/BFb0042806

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19238-1

  • Online ISBN: 978-3-540-39164-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics