Skip to main content

Sex, mate selection, and evolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1447))

Abstract

Simulations of the evolution of populations of diploid organisms showed that mate selection strategies which selected for “good genes” and strategies based on assortative mating, confer a much higher average fitness and higher evolutionary stability to populations than random mating. This advantage was more conspicuous the more genes per organism were simulated and the more genes were involved in the phenotype screened for mate selection. The results suggest that the evolutionary advantage of mate selection becomes evident only when the simultaneous adaptation of several genes are simulated. A cautionary lesson from the model is that mating is not likely to be random in nature and that mate selection may direct evolution by accelerating the exposure to natural selection of relevant traits. That is, models assuming random mating may not reflect what is happening in nature as sexual reproduction is probably associated with mate or gamete selection in most living organisms.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, M.B. 1994. Sexual Selection. Princeton Univ. Press.

    Google Scholar 

  2. Andersson, M.B. and Iwasa, Y. 1996. Sexual Selection. Trends in Evolutionary Ecology, 11: 53–58.

    Google Scholar 

  3. Atmar, W. 1991. On the role of males. Animal Behavior 41: 195–205.

    Google Scholar 

  4. Bell, G. and Maynard Smith, J. 1987. Short-term selection for recombination among mutually antagonistic species. Nature, 328: 66–68.

    Google Scholar 

  5. Bremermann, H.J. 1980. Sex and polymorphism as strategies in host-pathogen interactions. J. Theor. Biol., 87: 641–702.

    Google Scholar 

  6. Bremermann, H.J. 1985. The adaptive significance of sexuality. Experientia 41: 1245–1253.

    Google Scholar 

  7. Buss, D. 1989. Sex differences in human mate preferences: Evolutionary hypotheses tested in 37 cultures. Behav. Brain Sci. 12: 1–49.

    Google Scholar 

  8. Davis, C.H. 1995. The effect of assortative mating and environmental variation on selection for sexual reproduction. Evolutionary Theory, 11: 51–53.

    Google Scholar 

  9. Eberhard, W.G. 1966. Female Control: Sexual Selection by Cryptic female Choice. Princeton Univ. Press, New Jersey,USA, 501 pp.

    Google Scholar 

  10. Ebert, D. and Hamilton, W.D. 1996. Sex against virulence: The coevolution of parasitic diseases. Trends in Evolutionary Ecology, 11: 79–82.

    Google Scholar 

  11. Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.

    Google Scholar 

  12. Grammer, K. 1989. Human courtship behaviour: biological basis and cognitive processing. In: Rasa A.E., Vogel C. and Voland E. (eds). The sociobiology of sexual and reproductive strategies Chapman and Hall, London. Pp. 147–169.

    Google Scholar 

  13. Hamilton, W.D. 1980. Sex versus non-sex versus parasites. Oikos, 35: 282–296.

    Google Scholar 

  14. Hamilton, W.D., Axelrod, R and Tanese, R. 1990. Sexual reproduction as an adaptation to resist parasites (A review). Proc. Nat. Acad. Sci. (USA) 87: 3566–3573.

    Google Scholar 

  15. Hill, W.G. and Robertson, A. 1966. The effect of linkage on limits to artificial selection. Genet. Res. Camb. 8: 269–294.

    Google Scholar 

  16. Howard, R.S. and Lively C.M. 1994. Parasitism, mutation accumulation and the maintenance of sex. Nature, 367: 554–556.

    Google Scholar 

  17. Hurst, L.D. and Peck, J.R. 1996. Recent advances in the understanding of the evolution and maintenance of sex. Trends in Evolutionary Ecology, 11: 46–52.

    Google Scholar 

  18. Jacobs, L.F. 1996. Sexual selection and the brain. Trends in Evolutionary Ecology, 11: 82–86.

    Google Scholar 

  19. Jaffe, K. 1995. Biodynamica: A simulation model for biological evolution. File Biodynin.exe in http://hercules.usb.ve/~kjaffe (requires a MS Windows environment).

    Google Scholar 

  20. Jaffe, K. 1996. The dynamics of the evolution of sex: Why the sexes are, in fact, always two? Interciencia, 21: 259–267 and 22: 48.

    Google Scholar 

  21. Jaffe, K and Chacon-Puignau, G. 1995. Assortative mating: sex differences in mate selection for married and unmarried couples. Human Biol., 67: 111–120.

    Google Scholar 

  22. Jaffe, K., Issa, S., Daniels, E. and Haile, D. 1997. Dynamics of the emergence of genetic resistance to pesticides among asexual and sexual organisms. J. Theor. Biol. 188: 289–299.

    Google Scholar 

  23. Judson, O.P. and Normak, B.B. 1996. Ancient asexual scandals. Trends in Evolutionary Ecology, 11: 41–46.

    Google Scholar 

  24. Kondrashov, A.S. 1994. The asexual ploidy cycles and the origin of sex. Nature 370: 213–216

    Google Scholar 

  25. LeClerc, J.E., Li, B., Payne W.L. and Cebula T.A. 1996. High mutation frequencies among Echerichia coli and Salmonella pathogens. Science 274: 1208–1211.

    Google Scholar 

  26. Levin, S.A., Grenfell, B., Hastings, A. and Perlson, A.S. 1997. Mathematical and computational challenges in population biology and ecosystem science. Science, 275: 334–343.

    Google Scholar 

  27. Maynard Smith, J. 1978. The Evolution of Sex. Cambridge Univ. Press. U.K.

    Google Scholar 

  28. Miller, G.F. and Todd, P.M. 1994. Evolutionary wanderlust: Sexual selection with directional mate preferences. In: D. Cliff, P. Husbands, J.A. Meyer and S. Wilson eds. Proc. Third Inter. Conf. Simulation Adaptive Behav. (SAB-94), M.I.T. Press, Bradford Books, pp 21–30.

    Google Scholar 

  29. Muller, H.J. 1932. Some genetic aspects of sex. Amer. Natur. 66: 118–138.

    Google Scholar 

  30. Muller, H.J. 1964. The relation of recombination to mutational change. Mutat Res 1:2–9.

    Google Scholar 

  31. Nahon, E., Atzmony, D., Zahavi, A. and Granot, D. 1995. Mate selection in Yeast: A reconsideration of the signals and the message encoded by them. J. Theor. Biol., 172: 315–322.

    Google Scholar 

  32. Pennisi, E. 1995. Imperfect match, do ideal mates come in symmetrical packages? Science News, 147: 60–61.

    Google Scholar 

  33. Ruelle, D., 1991. Chance and Chaos. Princeton Univ. Press, Princeton, 195 pp.

    Google Scholar 

  34. Rushton, J.P. 1989. Genetic similarity, human altruism and group selection. Behav. Brain. Sci., 12: 503–559

    Google Scholar 

  35. Thiessen, D. and Gregg, B. 1980. Human assortative mating and genetic equilibrium: an evolutionary perspective. Ethol. Sociobiol., 1: 111–140.

    Google Scholar 

  36. Voland, E. and Engel, C. 1990. Female choice in humans: a conditional mate selection strategy of the Krummhorn women (Germany, 1720–1874)., Ethol 84: 144–154.

    Google Scholar 

  37. Wedekind, C., Seebeck, T., Bettens, F. and Paepke, J. 1995. MHC-dependent mate preferences in humans. Proc. R. Soc. Lond. B., 260: 245–249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. W. Porto N. Saravanan D. Waagen A. E. Eiben

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jaffe, K. (1998). Sex, mate selection, and evolution. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds) Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0040800

Download citation

  • DOI: https://doi.org/10.1007/BFb0040800

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64891-8

  • Online ISBN: 978-3-540-68515-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics