FAST16 : A software program for factorising polynomials over large GF(p)

  • A. Poli
  • M. C. Gennero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 307)


We propose experimental results, obtained from an algorithm for factorising polynomial over large prime fields GF (p).

Experimental running times are compared with those needed using Macsyma (for the same polynomials, on the same computer).

The proposed algorithm includes original contributions : a strategy based on Stickelberger's theorem, a particular use of the Norm function. and a systematic use of sequences of squares/non-squares in GF (p).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Berlekamp E.R. "Algebraic coding theory" MacGraw Hill, New York (1968)Google Scholar
  2. (2).
    BERLEKAMP E.R. "Factoring polynomials over large finite fields" Math. Comp. Vol 24, pp 713–735 (1970)Google Scholar
  3. (3).
    BURGESS D.A. "The distribution of quadratic residues and non-residues" Mathematika Vol 4, 106–112 (1957)Google Scholar
  4. (4).
    CAMION P. "Un algorithme de construction des idempotents primitifs d'idéaux sur IFq" Annals of Discrete Math. Vol 12,55–63 (1982)Google Scholar
  5. (5).
    CAMION P. "A deterministic algorithm for factorising polynomials of IFq [X]" Annals of Discrete Math. vol 17, 149–157 (1983)Google Scholar
  6. (6).
    CANTOR D.G. and ZASSENHAUS H. "A new algorithm for factorising polynomials over finite fields" Math. Comp. vol 36 154–163 (1981)Google Scholar
  7. (7).
    DAVENPORT H., ERDOS P. "The distribution of quadratic and higher residues" Publ. Math. Debrecen vol 2 252–265 (1952)Google Scholar
  8. (8).
    GOLOMB S.W., WELCH L.R., HALES A. "On the factorisation of trinomials over GF (2)" J.P.L. Memo 20–189 (July 1959)Google Scholar
  9. (9).
    HUDSON R.H. "On the sequences of consecutive quadratic non-residues" J. of Number Theory, Vol 3 178–181 (1971)Google Scholar
  10. (10).
    KNUTH D.E. "The Art of computer programming", Vol 2 Seminumerical algorithms Addison-Wesley Publishing Company (2th Edition)Google Scholar
  11. (11).
    MacWILLIAMS F.J. "The structure and properties of binary cyclic alphabets" Bell System Technical J. Vol 44 303–332 (1965)Google Scholar
  12. (12).
    MOENCK R.T. "On the efficiency of algorithms for polynomial factoring" Mathematics of computation, Vol 31 235–250 (1977)Google Scholar
  13. (13).
    POLI A., RIGONI C. "Experimental comparison between softwares for binary polynomial factorisation" (In French) Revue Traitement du Signal Vol 1no2–2 211–215 (1984)Google Scholar
  14. (14).
    POLI A. "Construction of primitive idempotents for n variable codes" LNCS/Springer Verlag, no228, 25–35 (1985)Google Scholar
  15. (15).
    RABIN M.O. "Probabilistic algorithms in finite fields" MIT/LCS/TR.213 (1979)Google Scholar
  16. (16).
    TARJAN R.E., HOPCROFT J.E. "An interview with the 1986 A.M. Turing award recipients" Communications of the ACM vol 30 no 3 214–222 (1987)Google Scholar
  17. (17).
    ZASSENHAUS H.J. "On Hensel factorisation" J. Numb. Th. 291–311 (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • A. Poli
    • 1
  • M. C. Gennero
    • 1
  1. 1.AAECC/LSI Lab.Université P. SabatierToulouseFrance

Personalised recommendations