Standard bases and non-noetherianity: Non-commutative polynomial rings

  • Teo Mora
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 307)


Standard Basis Cauchy Sequence Polynomial Ring Commutative Case Free Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BUC1]
    B.BUCHBERGER Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. Thesis, Innsbruck (1965)Google Scholar
  2. [BUC2]
    B. BUCHBERGER A criterion for detecting unnecessary reductions in the constructions of Groebner bases, Proc. EUROSAM 79, L. N. Comp. Sci. 72 (1979), 3–21Google Scholar
  3. [BUC3]
    B.BUCHBERGER Groebner bases: an algorithmic method in polynomial ideal theory, in N.K.BOSE Ed., Recent trends in multidimensional systems theory, Reidel (1985)Google Scholar
  4. [GAL]
    A. GALLIGO A propos du theoreme de preparation de Weierstrass. L. N. Math. 409 (1974), 543–579Google Scholar
  5. [HIR]
    H. HIRONAKA Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79 (1964), 109–326Google Scholar
  6. [KRK]
    A.KANDRI-RODY, D.KAPUR An algorithm for computing the Groebner basis of a polynomial ideal over a euclidean ring (1984)Google Scholar
  7. [KFS]
    H.KOBAYASHI, A.FURUKAWA, T.SASAKI Groebner basis of ideal of convergent power series (1985)Google Scholar
  8. [LAZ]
    D. LAZARD Groebner bases, Gaussian elimination, and resolution of systems of algebraic equations, Proc. EUROCAL 83, L. N. Comp. Sci. 162 (1983), 146–156Google Scholar
  9. [MOE]
    H.M.MOELLER On the construction of Groebner bases using syzygies (1986)Google Scholar
  10. [MOR1]
    F.MORA Groebner bases for non-commutative polynomial rings, Proc. AAECC3, L. N. Comp. Sci. 228 (1986)Google Scholar
  11. [MOR2]
    F. MORA An algorithm to compute the equations of tangent cones, Proc. EUROCAM 82, L. N. Comp. Sci. 144 (1982), 158–165Google Scholar
  12. [MOR3]
    F. MORA A constructive characterization of standard bases, Boll. U.M.I., Sez.D, 2 (1983), 41–50Google Scholar
  13. [MOR4]
    T.MORA Standard bases (1), Congress on "Computational Geometry and Topology and Computation in Teaching Mathematics" Sevilla (1987)Google Scholar
  14. [NVO]
    C.NASTASESCU, F. VAN OYSTAEYEN Graded Ring Theory, North-Holland (1982)Google Scholar
  15. [PAN]
    L.PAN On the D-bases of ideals in polynomial rings over a principal ideal domain (1985)Google Scholar
  16. [ROB1]
    L.ROBBIANO On the theory of graded structures, J. Symb. Comp. 2 (1986)Google Scholar
  17. [ROB2]
    L. ROBBIANO Term orderings on the polynomial ring Proc. EUROCAL 85, L. N. Comp. Sci. 204 (1985), 513–517Google Scholar
  18. [SCH]
    S.SCHALLER Algorithmic aspects of polynomial residue class rings, Ph.D. Thesis, Wisconsin Univ. (1979)Google Scholar
  19. [ZAC]
    G.ZACHARIAS Generalized Groebner bases in commutative polynomial rings, Bachelor Thesis, M.I.T. (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Teo Mora
    • 1
  1. 1.Università di GenovaItaly

Personalised recommendations