Advertisement

On the structure of algorithmic problems

  • E. Engeler
Hauptvorträge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Engeler: Formal Languages: Automata and Structures. Markham Publ. Co., Chicago 1968.Google Scholar
  2. [2]
    R.W. Floyd: Assigning Meaning to Programs. Proc. Symp. in Applied Math. 19, Math. Aspects of Computer Science (J. T. Schwarz, ed.), Amer. Math. Soc., 1967, pp. 19–32.Google Scholar
  3. [3]
    M. Grabowski: The set of all tautologies of the zero-order algorithmic logic is decidable. Bull. Acad. Pol. Sci., Sér. Sci. math., astron., phys. 20 (1972), pp. 575–582.Google Scholar
  4. [4]
    J. Gruska: A characterization of context-free languages. J. Comp. Syst. Sci. 5, (1971), pp. 353–364.Google Scholar
  5. [5]
    C.A.R. Hoare: An axiomatic basis for computer programming. Comm. ACM 12 (1969), pp. 576–583.Google Scholar
  6. [6]
    — and N. Wirth: An axiomatic definition fo the programming language Pascal. Berichte der FG Computer-Wissenschaften 6, E.T.H. Zürich, 1972.Google Scholar
  7. [7]
    A. Kreczmar: The set of all tautologies of algorithmic logic is hyperarithmetical. Bull. Acad. Pol. Sci., Sér. Sci. math. astron. phys. 21 (1971), pp. 781–783.Google Scholar
  8. [8]
    R. Milner: Implementation and applications of Scott's logic for computable functions. Proc. ACM Conference on Proving Assertions about Programs, New Mexico (1972), pp. 1–6.Google Scholar
  9. [9]
    G. Mirkowska: On formalized systems of algorithmic logic. Bull. Acad. Pol. Sci., Sér. Sci. math. astron. phys. 21 (1970), pp. 421–428.Google Scholar
  10. [10]
    A. Salwicki: Formalized algorithmic languages. ibid. 18, (1970), pp. 227–232.Google Scholar
  11. [11]
    —: On the equivalence of FS-expressions and programs, ibid., pp. 275–278.Google Scholar
  12. [12]
    D.S. Scott, unpublished memo, 1969.Google Scholar
  13. [13]
    N. Moler and P. Suppes: Quantifier-free axioms for constructive plane geometry. Comp. Math. 20 (1968), pp. 143–152.Google Scholar
  14. [14]
    A. Tarski: What is elementary geometry? The Axiomatic Method (Henkin, Suppes, Tarski, eds.) North-Holland Publ. Co., Amsterdam 1959, pp. 16–29.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • E. Engeler

There are no affiliations available

Personalised recommendations