On the structure of algorithmic problems

  • E. Engeler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Engeler: Formal Languages: Automata and Structures. Markham Publ. Co., Chicago 1968.Google Scholar
  2. [2]
    R.W. Floyd: Assigning Meaning to Programs. Proc. Symp. in Applied Math. 19, Math. Aspects of Computer Science (J. T. Schwarz, ed.), Amer. Math. Soc., 1967, pp. 19–32.Google Scholar
  3. [3]
    M. Grabowski: The set of all tautologies of the zero-order algorithmic logic is decidable. Bull. Acad. Pol. Sci., Sér. Sci. math., astron., phys. 20 (1972), pp. 575–582.Google Scholar
  4. [4]
    J. Gruska: A characterization of context-free languages. J. Comp. Syst. Sci. 5, (1971), pp. 353–364.Google Scholar
  5. [5]
    C.A.R. Hoare: An axiomatic basis for computer programming. Comm. ACM 12 (1969), pp. 576–583.Google Scholar
  6. [6]
    — and N. Wirth: An axiomatic definition fo the programming language Pascal. Berichte der FG Computer-Wissenschaften 6, E.T.H. Zürich, 1972.Google Scholar
  7. [7]
    A. Kreczmar: The set of all tautologies of algorithmic logic is hyperarithmetical. Bull. Acad. Pol. Sci., Sér. Sci. math. astron. phys. 21 (1971), pp. 781–783.Google Scholar
  8. [8]
    R. Milner: Implementation and applications of Scott's logic for computable functions. Proc. ACM Conference on Proving Assertions about Programs, New Mexico (1972), pp. 1–6.Google Scholar
  9. [9]
    G. Mirkowska: On formalized systems of algorithmic logic. Bull. Acad. Pol. Sci., Sér. Sci. math. astron. phys. 21 (1970), pp. 421–428.Google Scholar
  10. [10]
    A. Salwicki: Formalized algorithmic languages. ibid. 18, (1970), pp. 227–232.Google Scholar
  11. [11]
    —: On the equivalence of FS-expressions and programs, ibid., pp. 275–278.Google Scholar
  12. [12]
    D.S. Scott, unpublished memo, 1969.Google Scholar
  13. [13]
    N. Moler and P. Suppes: Quantifier-free axioms for constructive plane geometry. Comp. Math. 20 (1968), pp. 143–152.Google Scholar
  14. [14]
    A. Tarski: What is elementary geometry? The Axiomatic Method (Henkin, Suppes, Tarski, eds.) North-Holland Publ. Co., Amsterdam 1959, pp. 16–29.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • E. Engeler

There are no affiliations available

Personalised recommendations