Skip to main content

Entangled linear, branched and network polymer systems — Molecular theories

  • Conference paper
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 47))

Abstract

This article deals with recent work on the theory of entanglement effects in polymer rheology, in particular, the reptation idea of deGennes and the tube model of Doi — Edwards. Predictions which depend on the independent alignment approximation are omitted. Attention is focussed primarily on linear viscoelastic properties, macromolecular diffusion, relaxation following step strains and network properties. Theoretical predictions and experimental observations are discussed for monodisperse linear and star-branched polymer liquids. Effects due to chain length distribution, relaxation behavior of unattached chains in networks, and the equilibrium elasticity of networks are also considered. The results suggest a need to consider relaxation mechanisms in addition to simple reptation as well as certain modifications in the tube model itself. The effect of fluctuations in chain density along the tube is probably quite important in branched chain liquids. Considerations about lifetimes of the tube defining constraints seem necessary to account for polydispersity effects and for differences between relaxation rate of chains in liquids and in networks. A modified tube model is proposed which gives a somewhat better description of elasticity in entangled networks while still producing the Doi-Edwards expression for stress in entangled liquids. Experimental results so far are qualitatively consistent with the picture which is presented here. Much work needs to be done however to test for quantitative consistency.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

primitive path step length

c:

polymer concentration (mass/volume)

D:

macroscopic diffusion coefficient

D*:

diffusion coefficient along the primitive path

Dr :

diffusion coefficient from the Rouse model

d:

mesh size, length of a primitive segment (Pt. II)

E:

displacement gradient tensor

F:

free energy

F(t):

fraction of initial primitive path steps which are still occupied

f:

branch point functionally, number of strands emanating from the same junction point

k:

Boltzmann constant

L:

average primitive path length

Lo :

Polymer chain length

Lm :

length of a primitive path with m primitive segments

M:

molecular weight of the polymer

Mo :

molecular weight of the monomer unit

m:

number of path-occupying primitive segments

mo :

total number of primitive segments for a molecule

no :

number of monomer units in a chain

N:

mean number of primitive path steps for a molecule

Nb :

mean number of primitive path steps along a branch

Ns :

number of primitive path steps occupied by the matrix chains in a mixture

Pm :

path length probability function

p:

probability that a primitive segment selected at random is part of the surplus (loop) population

Qm :

probability that a chain selected at random contains at least m path-occupying primitive segments, \(\sum\limits_{n = m}^{mo} {P_m }\)

Rg :

position of center-of-gravity of a molecule

RG :

universal gas constant

〈R2〉, 〈r2〉:

mean-square end-to-end distance for unperturbed chains and parts of chains

ri :

end-to-end vector for a primitive path step

S:

entropy

S1, S2, S3 :

numerical coefficients of order unity obtains from summations

T:

temperature

u:

unit tangent vector for a primitive path step

W:

stored energy function

z:

number of “suitably situated” constraints defining a primitive path step

zo :

total number of constraint strands defining a primitive path step

γ:

strain in simple shear

ε:

Curtiss-Bird link tension coefficient

ζ o :

Monomeric friction coefficient

λ:

stretch ratio in uniaxial extension

λ i :

eigenvalues in the Rouse model

ν:

chains per unit volume

ϱ:

undiluted polymer density

σ:

shear stress or tensile stress (in context)

σ :

α, β component of the stress tensor

τ:

relaxation time

τ d :

Doi-Edwards disengagement time

τ e :

Doi-Edwards equilibration time

τ r :

longest relaxation time in the Rouse model

τ w :

mean waiting time for contraint release

τ tr :

time characterizing the linear viscoelastic transition region

φ:

jump frequency

φ:

volume fraction of polymer

Λ(z):

proportionality constant relating τw and τd for linear chains

References

  1. P. G. de Gennes, J. Chem. Phys. 55, 572 (1971); see also Chap. VIII of P. G. de Gennes, “Scaling Concepts in Polymer Physics“, Cornell University Press, Ithaca, 1979.

    Google Scholar 

  2. M. Doi and S. F. Edwards, J. Chem. Soc. Faraday Trans. 2 74, 1789 (1978)

    Google Scholar 

  3. M. Doi and S. F. Edwards, J. Chem. Soc. Faraday Trans. 2 74, 1802 (1978)

    Google Scholar 

  4. M. Doi and S. F. Edwards, J. Chem. Soc. Faraday Trans. 2 74, 1818 (1978)

    Google Scholar 

  5. M. Doi and S. F. Edwards, J. Chem. Soc. Faraday Trans. 2 75, 38 (1979)

    Google Scholar 

  6. M. Doi, J. Polymer Sci.: Polymer Phys. Ed. 18, 2055 (1980)

    Google Scholar 

  7. M. Doi, J. Polymer Sci.: Polymer Phys. Ed. 18, 1891 (1980)

    Google Scholar 

  8. M. Doi, J. Polymer Sci.: Polymer Phys. Ed. 18, 1005 (1980)

    Google Scholar 

  9. M. Doi and N. Y. Kuzuu, J. Polymer Sci.: Letters 18, 775 (1980)

    Google Scholar 

  10. M. Doi, J. Polymer Sci.: Letters 19, 265 (1981)

    Google Scholar 

  11. W. W. Graessley, J. Polymer Sci.: Polymer Phys. Ed. 18, 27 (1980)

    Google Scholar 

  12. J. D. Ferry, “Viscoelastic Properties of Polymers”, 3rd Ed., John Wiley and Sons, New York, 1980

    Google Scholar 

  13. W. W. Graessley, Adv. Polymer Sci. 16, 1 (1974)

    Google Scholar 

  14. H.-C. Kan, J. D. Ferry and L. J. Fetters, Macromolecules 13, 1571 (1980)

    Google Scholar 

  15. C. R. Taylor, H.-C. Kan, G. W. Nelb and J. D. Ferry, J. Rheology 25, 507 (1981)

    Google Scholar 

  16. S. Granick, S. Pederson, G. W. Nelb, J. D. Ferry and C. W. Macosko, ACS Polymer Preprints 22(2), 186 (1981)

    Google Scholar 

  17. P. G. de Gennes, J. Phys. 36, 1199 (1975)

    Google Scholar 

  18. W. W. Graessley, T. Masuda, J. E. L. Roovers and N. Hadjichristidis, Macromolecules 9, 127 (1976)

    Google Scholar 

  19. W. W. Graessley, Accts. Chem. Research 10, 332 (1977)

    Google Scholar 

  20. W. E. Rochefort, G. G. Smith, H. Rachapudy, V. R. Raju and W. W. Graessley, J. Polymer Sci.: Polymer Phys. Ed. 17, 1197 (1979)

    Google Scholar 

  21. P. G. de Gennes, Macromolecules 9, 587 (1976)

    Google Scholar 

  22. Ref. 13, Eq. 6.33

    Google Scholar 

  23. M. Fukuda, K. Osaki and M. Kurata, J. Polymer Sci.: Polymer Phys. Ed. 13, 1563 (1975), and earlier articles

    Google Scholar 

  24. K. Osaki and M. Kurata, Macromolecules 13, 671 (1980)

    Google Scholar 

  25. W. W. Graessley, Macromolecules 8, 186 (1975)

    Google Scholar 

  26. M. Gottlieb, C. W. Macosko, G. S. Benjamin, K. O. Meyers and E. W. Merrill, Macromolecules 14, 1039 (1981) and references

    Google Scholar 

  27. J. E. Mark, Rubber Chem. Techn. 48, 495 (1975)

    Google Scholar 

  28. J. D. Ferry and H.-C. Kan, Rubber Chem. Tech. 51, 731 (1978)

    Google Scholar 

  29. G. Marrucci and G. de Cindio, Rheologica Acta 19, 68 (1980); G. Marrucci and J. J. Hermans, Macromolecules 13, 380 (1980); G. Marrucci, Macromolecules 14, 434 (1981)

    Google Scholar 

  30. C. F. Curtiss and R. B. Bird, J. Chem. Phys. 74, 2016 (1981); ibid., 74, 2026 (1981)

    Google Scholar 

  31. K. E. Evans, Doctoral Dissertation, The Cavendish Laboratory, University of Cambridge (1980); K. E. Evans and S. F. Edwards, J. Chem. Soc. Faraday Trans. 2, 77, 1891 (1981); ibid. 77, 1913 (1981); ibid. 77 1929 (1981)

    Google Scholar 

  32. R. B. Bird, O. Hassager, R. C. Armstrong and C. F. Curtiss, “Dynamics of Polymeric Liquids” Vol. 2. “Kinetic Theory”, John Wiley and Sons, New York, 1977

    Google Scholar 

  33. P. J. Flory, “Principles of Polymer Chemistry”, Cornell University Press, Ithaca, 1953

    Google Scholar 

  34. R. E. Cohen and N. W. Tschoegl, Intern. J. Polymeric Mater. 3, 3 (1974)

    Google Scholar 

  35. K. E. Evans, J. Chem. Soc. Faraday Trans. 2, to be published

    Google Scholar 

  36. W. W. Graessley and J. Roovers, Macromolecules 12, 959 (1979)

    Google Scholar 

  37. G. Marin, E. Menezes, V. R. Raju and W. W. Graessley, Rheologica Acta 19, 462 (1980)

    Google Scholar 

  38. V. R. Raju, E. V. Menezes, G. Marin, W. W. Graessley and L. J. Fetters, Macromolecules 14, 1668 (1981)

    Google Scholar 

  39. R. A. Orwoll and W. Stockmayer, Adv. Chem. Phys. 15, 305 (1969)

    Google Scholar 

  40. J. Klein, Macromolecules 11, 852 (1978); M. Daoud and P. G. de Gennes, J. Polymer Sci.: Polymer Phys. Ed. 17, 1971 (1979)

    Google Scholar 

  41. J. Klein, Phil. Mag. A43, 771 (1981)

    Google Scholar 

  42. L. Léger, H. Hervet and F. Rondelez, Macromolecules 14, 1732 (1981)

    Google Scholar 

  43. J. Klein, ACS Polymer Preprints (March, 1981) 22, 105 (1981)

    Google Scholar 

  44. J. D. Ferry, private communication

    Google Scholar 

  45. W. W. Graessley and S. F. Edwards, Polymer 22, 1329 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Graessley, W.W. (1982). Entangled linear, branched and network polymer systems — Molecular theories. In: Synthesis and Degradation Rheology and Extrusion. Advances in Polymer Science, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0038532

Download citation

  • DOI: https://doi.org/10.1007/BFb0038532

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11774-2

  • Online ISBN: 978-3-540-39483-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics