Advertisement

Structured graph models: An efficient tool for VLSI design

  • M. Ancona
  • K. S. Bagga
  • E. Bruzzone
  • L. De Floriani
  • J. S. Deogun
Track 9: VLSI Design
Part of the Lecture Notes in Computer Science book series (LNCS, volume 507)

Abstract

Hierarchical graph models are a powerful tool for describing VLSI circuits. They combine the representation of a hierarchical decomposition of a circuit with a graph description of its topological structure in terms of components and connections. Structured Graphs are an example of such models. In this paper we consider the graph-theoretic problems of spanning trees and Steiner trees in structured graphs. These have connections with the global routing problems in VLSI circuits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Ancona, L. De Floriani. Computational Algorithms for Hierarchically Structured Project Networks, Operations Research Letters, vol. 1, no. 5, 1982.Google Scholar
  2. [2]
    M. Ancona, L. De Floriani, J.S. Deogun. Path Problems in Structured graphs. The Computer Journal, vol. 29, no. 6, 1986.Google Scholar
  3. [3]
    M. Ancona, E. Bruzzone, L. De Floriani. The Steiner Problem in structured Graphs. Tech. Rep. I.M.A., 28–88, Genova, 1988.Google Scholar
  4. [4]
    L. De Floriani, J.S. Deogun. Structured Graphs and Spanning Trees. Proceedings IEEE COMPSAC'83, Chicago, November 1983.Google Scholar
  5. [5]
    F. Harary. Graph Theory. Addison Wesley, Reading, Mass., 1977.Google Scholar
  6. [6]
    P. Winter. Steiner Problem in Networks: A Survey. Networks, vol. 17, 1987, pp 129–167.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. Ancona
    • 1
  • K. S. Bagga
    • 2
  • E. Bruzzone
    • 1
  • L. De Floriani
    • 1
  • J. S. Deogun
    • 3
  1. 1.Instituto per la Matematica ApplicataGenoaItaly
  2. 2.Department of Computer ScienceBall State UniversityMuncieUSA
  3. 3.Department of Computer ScienceUniversity of NebraskaLincolnUSA

Personalised recommendations