A search for good lattice rules based on the reciprocal lattice generator matrix

  • James N. Lyness
  • W. Newman
Track 8: Numerical Analysis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 507)


The search for cost-effective lattice rules is a time-consuming and difficult process. After a brief overview of some of the lattice theory relevant to these rules, a new approach to this search is suggested. This approach is based on a classification of lattice rules using “the upper triangular lattice form” of the reciprocal lattice generator matrix.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. H. Bradley, 1971. “Algorithms for Hermite and Smith Normal Matrices and Linear Diophantine Equations,” Math. Comput. 25 (1971), pp. 897–907.zbMATHMathSciNetCrossRefGoogle Scholar
  2. Marc Bourdeau and Alain Pitre, 1985. “Tables of good lattices in four and five dimensions,” Numer. Math. 47 (1985), pp. 39–43.zbMATHMathSciNetCrossRefGoogle Scholar
  3. J. W. S. Cassels, 1959. An Introduction to the Geometry of Numbers, Springer.Google Scholar
  4. E. Hlawka, 1962. “Zur angenäherten Berechnung mehrfacher Integrale,” Monatsh. Math. 66 (1962), pp. 140–151.zbMATHMathSciNetCrossRefGoogle Scholar
  5. Gershon Kedem and S. K. Zaremba, 1974. “A table of good lattice points in three dimensions,” Numer. Math. 23 (1974), pp. 175–180.zbMATHMathSciNetCrossRefGoogle Scholar
  6. N. M. Korobov, 1959. “The approximate computation of multiple integrals,” (in Russian), Dokl. Akad. Nauk. SSSR 124 (1959), pp. 1207–1210.zbMATHMathSciNetGoogle Scholar
  7. J. N. Lyness, 1988. “Some comments on quadrature rule construction criteria,” in International Series of Numerical Mathematics, vol. 85, Numerical Integration III, ed. G. Hämmerlin and H. Brass, Birkhauser Verlag, Basel, 1988, pp. 117–129.Google Scholar
  8. J. N. Lyness, 1989. “An introduction to lattice rules and their generator matrices,” to appear in IMA JNA (1989).Google Scholar
  9. J. N. Lyness and W. Newman, 1989. “A classification of lattice rules using the reciprocal lattice generator matrix,” (1989), Argonne National Laboratory Report ANL-89/20, Argonne, Illinois.Google Scholar
  10. J. N. Lyness and T. Sørevik, 1989. “The number of lattice rules,” BIT 29 (1989), 527–534.zbMATHMathSciNetCrossRefGoogle Scholar
  11. J. N. Lyness, T. Sørevik, and P. Keast, 1990. “Notes on integration and integer sublattices,” preprint MCS-P34-1288, Argonne National Laboratory; to appear in Math.Comput. (1990).Google Scholar
  12. J. N. Lyness and I. H. Sloan, 1989. “Some properties of rank-2 lattice rules,” to appear in Math. Comput. (1989).Google Scholar
  13. D. Maisonneuve, 1972. “Recherche et Utilisation des ‘Bons Treillis'. Programming et Resultats Numeriques,” in Applications of Number Theory in Numerical Analysis, S. K. Zaremba, ed., Academic Press (1972) [QA 297.S995], pp. 121–201.Google Scholar
  14. H. Niederreiter, 1988. “Quasi-Monte Carlo methods for multidimensional numerical integration,” in International Series of Numerical Mathematics, vol. 85, Numerical Integration III, ed. G. Hämmerlin and H. Brass, Birkhauser Verlag, Basel, 1988, pp. 157–171.Google Scholar
  15. A. Schrijver, 1986. Theory of Linear and Integer Programming, Wiley.Google Scholar
  16. I. H. Sloan and J. N. Lyness, 1989. “The representation of lattice quadrature rules as multiple sums,” Math. Comp. 52 (1989), pp. 81–94.zbMATHMathSciNetCrossRefGoogle Scholar
  17. I. H. Sloan and J. N. Lyness, 1990. “Lattice rules: projection regularity and unique representations,” Math. Comput. (to appear). Also MCS-P75-0489, Argonne National Laboratory.Google Scholar
  18. S. K. Zaremba, 1966. “Good lattice points, discrepancy and numerical integration,” Ann. Mat. Pura Appl. 73 (1966), pp. 293–317.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • James N. Lyness
    • 1
  • W. Newman
    • 1
  1. 1.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations