Skip to main content

Perturbation theory in a correlated basis

  • Conference paper
  • First Online:
Recent Progress in Many-Body Theories

Part of the book series: Lecture Notes in Physics ((LNP,volume 198))

Abstract

We give a brief outline of correlated basis functions (CBF) theory focusing the discussion on the linked cluster property of the theory, the diagrammatical rules of the perturbative series and its similarities with standard perturbation theory. Next, we discuss the choice of the correlation operator and give results obtained for the binding energy, the optical potential and the momentum distribution of nuclear matter by using variational theory plus second order CBF perturbation theory. When a state dependent pair correlation is used for the correlation operator, the second order perturbative corrections are generally small, nevertheless they are essential to reproduce important effects like the enhancement of the effective mass and the logarithmic slope of the momentum distribution at k=kF. The results obtained are compared with other theoretical estimates and with the available experimental data. The agreement with the empirical data is all over fairly good. Most of the discrepancies are attributed to the coupling of low lying states to surface vibrations, not present in infinite nuclear matter.

Work supported in part by NSF grant PHY81-21399 and NATO grant 0453/82

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W.Clark: contribution in this volume.

    Google Scholar 

  2. C.W.Woo: Phys.Rev.151 (1966) 138.

    Google Scholar 

  3. E.Krotscheck, H.Kümmel and J.G.Zabolitzky: Phys.Rev. A22 (1980)1243.

    Google Scholar 

  4. E.Krotscheck: Phys.Rev. A26 (1982)3536.

    Google Scholar 

  5. S.Fantoni:Phys.Rev.B to be published. &)The factorization holds only up to the order 1/A, which implies that also the so called “diagonal correction terms”(see refs. 3 and 5) must be taken into account. In the following discussion we consider them included into V(L)or N(L) ).

    Google Scholar 

  6. B.H.Brandow: Rev.Mod.Phys. 39 (1967)771.

    Google Scholar 

  7. V.R.Pandharipande and R.B.Wiringa: Rev.Mod.Phys. 51 (1979)821; S.Rosati:Proceedings of the International school of Physics Enrico Fermi, course LXXIX, ed. A.Molinari(North-Holland,Amsterdam 1982), pag.73.

    Google Scholar 

  8. S.Fantoni,B.L.Friman and V.R.Pandharipande: Nucl.Phys.A386 (1982)1.

    Google Scholar 

  9. E.Krotscheck: contribution in this volume.

    Google Scholar 

  10. I.E.Lagaris and V.R.Pandharipande: Nucl.Phys. A359 (1981)331.

    Google Scholar 

  11. J.Carlson, V.R.Pandharipande and R.B.Wiringa: Nucl.Phys.A in press

    Google Scholar 

  12. I.E.Lagaris and V.R.Pandharipande: Nucl.Phys. A359 (1981)349

    Google Scholar 

  13. S.Fantoni, B.L.Friman and V.R.Pandharipande: Nucl.Phys. A399 (1983)51.

    Google Scholar 

  14. E.Krotscheck, R.A.Smith and A.D.Jackson: Phys.Lett. 104B (1981)421.

    Google Scholar 

  15. B.Friedman and V.R.Pandharipande: Phys.Lett. 100B (1981)205.

    Google Scholar 

  16. G.E.Brown, J.H. Gunn and P.Gould: Nucl.Phys. 46 (1963)598.

    Google Scholar 

  17. J.P.Jeukenne,A.Lejeune and C.Mahaux: Phys.Reports 25C (1976)83.

    Google Scholar 

  18. R.Sartor and C.Mahaux: Phys.Rev. C21 (1980) 2613.

    Google Scholar 

  19. J.W.Negele and K.Yazaki: Phys.Rev.Lett. 47 (1981)71.

    Google Scholar 

  20. S.Fantoni, B.L.Frimanand V.R.Pandharipande: Phys.Lett. 104B (1981)89.

    Google Scholar 

  21. J.Dabrowski and A.Sobiczewski: Phys.Lett. 5 (1963)87.

    Google Scholar 

  22. S.Fantoni and V.R.Pandharipande: preprint (1983).

    Google Scholar 

  23. V.A.Belyakov: Sov.Phys. JETP 13 (1961)850.

    Google Scholar 

  24. G.F.Bertsch, P.F.Bortignon and R.A.Broglia: Rev.Mod.Phys. 55 (1983)287.

    Google Scholar 

  25. A.B. Migdal: Sov.Phys. JETP 5 (1957)333.

    Google Scholar 

  26. C.Mahaux: contribution in this volume.

    Google Scholar 

  27. J.M.Cavedon et al.: Phys.Rev.Lett. 49 (1982)978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Kümmel M. L. Ristig

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Fantoni, S., Friman, B.L., Pandharipande, V.R. (1984). Perturbation theory in a correlated basis. In: Kümmel, H., Ristig, M.L. (eds) Recent Progress in Many-Body Theories. Lecture Notes in Physics, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0037566

Download citation

  • DOI: https://doi.org/10.1007/BFb0037566

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12924-0

  • Online ISBN: 978-3-540-38808-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics