Advertisement

H+ transport by a non-electrogenic gastric ATpase as a model for acid secretion

Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 79)

Abstract

It would appear, therefore, that hog gastric mucosa contains a particularly interesting system which in many respects is compatible with a model for H+ secretion. It is quite different, at current levels of analysis, from the H+ ATPase of mitochondria. Indeed the stomach appears to have developed a unique method of developing H+ gradients. The magnitude of this gradient is such that perhaps this ATPase is only partially responsible, and that a second pump, in series with the one discussed in some detail here, is required for the complete process.

Keywords

Gastric Mucosa Acid Secretion Plasma Membrane ATPase Electrogenic Pump Electrophoretic Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitchell P.: Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature (Lond.) 191, 144–148 (1961)PubMedCrossRefGoogle Scholar
  2. 2.
    Jagendorf, A. T., Uribe, E.: ATP formation caused by acid-base transition of spinach chloroplasts. Proc. nat. Acad. Sci (Wash.) 55, 170–177 (1966)PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Kagawa Y., Racker E.: Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32Pi-ATP exchange. J. biol. Chem. 246, 5477–5487 (1971)Google Scholar
  4. 4.
    Racker E., Stoeckenius W.: Reconstitution of purple membrane vesicles catalyzing light driven H+ uptake and ATP formation. J. biol. Chem. 249, 662–666 (1974)PubMedGoogle Scholar
  5. 5.
    Hersey S. J.: Interaction between oxidative metabolism and acid secretion in gastric mucosa. Biochim. biophys. Acta 244, 157–203 (1974)CrossRefGoogle Scholar
  6. 6.
    Senior A. E.: The structure of mitochondrial ATPase. Biochim. biohys. Acta 301, 249–277 (1973)CrossRefGoogle Scholar
  7. 7.
    MacLennan D. H., Tzagoloff A.: Studies on the mitochondrial adenosine triphosphatase system. IV. Purification and characterization of the oligomycin sensitivity conferring protein. Biochemistry 7, 1603–1609 (1968)PubMedCrossRefGoogle Scholar
  8. 8.
    Pullman, H. W., Monroy, G. C.: A naturally occurring inhibitor of mitochondiral ATPase. J. biol. Chem. 238, 2762–2769 (1963)Google Scholar
  9. 9.
    Hinkle P. C., Horstman L. L.: Respiration driven proton transport in submitochondrial particles. J. biol. Chem. 246, 6024–6028 (1971)PubMedGoogle Scholar
  10. 10.
    Mitchell, P., Moyle, J.: Mechanism of proton translocation in reversible proton translocating ATPases. Biochemistry 4, 91–111 (1974)Google Scholar
  11. 11.
    Holloway, C. T., Roberton, A. M., Knight, I. G., Beechey, R. B.: The binding of [14C] dicyclohexylcarbodiimide to mitochondrial fractions. Biochem. J. 100, 79 (1966)Google Scholar
  12. 12.
    Kroman, E. F., McLick, J.: ATP synthesis in oxidative phosphorylation: A direct-union stereochemical reaction mechanism. J. Bioenerg. 3, 147–158 (1972)CrossRefGoogle Scholar
  13. 13.
    Skou, J. C.: Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45, 596–617 (1965)PubMedGoogle Scholar
  14. 14.
    Martonosi, A.: Transport of calcium by the sarcoplasmic reticulum. In: Metabolic Transport. Hokin, L. E. (ed.). New York: Academic Press, 1972, Vol VI, p. 317–349Google Scholar
  15. 15.
    Ganser, A. L., Forte, J. G.: K+ stimulated ATPase in purified microsomes of bullfrog oxyntic cells. Biochim. biophys. Acta 307, 169–180 (1973)PubMedCrossRefGoogle Scholar
  16. 16.
    Degani, G., Boyer, P. D.: A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum ATPase. J. biol. Chem. 248, 8222–8226 (1973)PubMedGoogle Scholar
  17. 17.
    Nishigaki, T., Chen, F. T., Hokin, L. E.: Studies on Na + K ATPase. XV. Direct chemical characterization of acyl phosphate in the enzyme as β-aspartyl phosphate. J. biol. Chem. 249, 4911–4916 (1974)PubMedGoogle Scholar
  18. 18.
    Post, R. L., Merritt, C. R., Kinsolving, C. R., Albright, C. D.: Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J. biol. Chem. 235, 1796–1802 (1960)PubMedGoogle Scholar
  19. 19.
    Fahn, S., Hurley, J. R., Koral, G. J., Albers, R. W.: Sodium potassium activated adenosine triphosphatase of electrophoresis electric organ. J. biol. Chem. 241, 1890–1895 (1966)PubMedGoogle Scholar
  20. 20.
    Taniguchi, K., Post, R. L.: Synthesis of ATP and exchange between Pi and ATP in Na++K+ ATPase. J. biol. Chem. 250, 3010–3018 (1973)Google Scholar
  21. 21.
    Kepner, G. R., Macey, R. I.: Membrane enzyme systems. Biochim. biophys. Acta 163, 188–203 (1968)PubMedCrossRefGoogle Scholar
  22. 22.
    Goldin, S. N., Tong, J. W.: Reconstitution of active ion transport by the Na+K ATPase. J. biol. Chem. 249, 5902–5915 (1975)Google Scholar
  23. 23.
    Shamoo, A. E., Ryan, T. E.: Isolation of ionophores from ion transport systems. Ann. N. Y. Acad. Sci. 264, 83–97 (1975)PubMedCrossRefGoogle Scholar
  24. 24.
    Racker, E., Knowles, A. F., Eytan, E.: Resolution and reconstitution of ion transport system. Ann. N. Y. Acad. Sci. 264, 17–33 (1975)PubMedCrossRefGoogle Scholar
  25. 25.
    Glynn, I. M., Karlish, J. D.: Different approaches to the mechanism of the sodium pump. In: Energy Transformation in Biological System, 205–224 (1975) Ciba GeigyGoogle Scholar
  26. 26.
    Forte, J. G., Forte, G. M., Saltman, P.: K+ stimulated phosphatase of microsomes from gastric mucosa. J. cell. comp. Physiol. 69, 293–304 (1967)CrossRefGoogle Scholar
  27. 27.
    Sachs, G., Rose, J. D., Shoemaker, R. I., Hirschowitz, B. I.: Phosphatase reactions of transport ATPase. Physiologist, 9, 281 (1966)Google Scholar
  28. 28.
    Sachs, G., Rose, J. D., Hirschowitz, B. I.: Acetyl phosphatase in rat brain microsomes. Arch. Biochem. 119, 277–281 (1967)PubMedCrossRefGoogle Scholar
  29. 29.
    Albers, R. W., Arnaiz, G. R. L., De Robertis, E.: Sodium-potassium-activated ATPase and potassium-activated p-nitrophenylphosphatase: A comparison of their subcellular localizations in rat brain. Proc. nat Acad. Sci. (Wash.) 53, 557–564 (1965)PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Ganser, A. L., Tanisawa, A. S., Forte, J. G.: The K+-stimulated ATPase system of microsomal membranes from gastric oxyntic cells. Ann. N. Y. Acad. Sci. 242, 255–267 (1974)PubMedCrossRefGoogle Scholar
  31. 31.
    Forte, J. G., Ganser, A., Beesly, R., Forte, T. M.: Unique enzymes of purified microsomes from pig fundic mucosa. Gastroenterology 69, 175–189 (1975)PubMedGoogle Scholar
  32. 32.
    Spenney, J. G., Saccomani, G., Spitzer, H. L., Sachs, G.: Characterization of gastric mucosal membranes. Arch. Biochem. biophys. Acta 161, 456–471 (1974)CrossRefGoogle Scholar
  33. 33.
    Saccomani, G., Stewar, H.B., Shaw, D., Lewin, M., Sachs, G. Fractionation and purification of K+ ATPase containing vesicles. Biochim. biophys. Acta 465, 311–330 (1977)PubMedCrossRefGoogle Scholar
  34. 34.
    Saccomani, G., Shah, G., Spenney, J. G., Sachs, G.: Localization of peptides by iodination and phosphorylation. J. biol. Chem. 250, 4802–4809 (1975)PubMedGoogle Scholar
  35. 35.
    Saccomani, G., Rabon, E., Sachs, E.: In preparation.Google Scholar
  36. 36.
    Sachs, G., Hirschowitz, B. I.: (1968) Secretion by in vitro amphibian mucosa IN: Physiology of Gastric Secretion. Myren, J. (ed.). Oslo: Oslo University Press, 1968, pp. 186–202Google Scholar
  37. 37.
    Jarnefelt, J., Stedingk, L. V. von: Some properties of the ATP dependent Na binding system of rat brain microsomes. Acta physiol. scand 57: 328–338 (1963)PubMedCrossRefGoogle Scholar
  38. 38.
    Sachs, G., Shoemaker, R. L., Blum, A. L., Helander, H. F., Makhlouf, G. M., Hirschowitz, B. I.: (1971) Microelectrode studies of gastric mucosa. IN: Electrophysiology of Epithelial Cells. Giebisch, G. (ed.) pp. 257–279Google Scholar
  39. 39.
    Ganser, A. L., Forte, J. G.: Ionophoretic stimulation of K+ ATPase of oxyntic cell microsomes. Biochem. Biophys. Res. Comm. 54, 690–696 (1973)PubMedCrossRefGoogle Scholar
  40. 40.
    Lee, J., Simpson, E., Scholes, P.: Changes of outer pH in suspension of membrane vesicles accompanying ATP hydrolysis. Biochem. Biophys. Res. Commun. 60, 825–834 (1974)PubMedCrossRefGoogle Scholar
  41. 41.
    Sachs, G., Rabon, E., Saccomani, G., Sarau, H. M.: Redox and ATP in acid secretion. Ann. N. Y. Acad. Sci. 264, 456–475 (1975)PubMedCrossRefGoogle Scholar
  42. 42.
    Sachs, G., Hung, H., Rabon, E., Schackmann, R., Lewin, M., Saccomani, G. A non-electrogenic H+ pump in plasma membranes of hog stomach. J. biol. Chem. 251, 7690–7698 (1976)PubMedGoogle Scholar
  43. 43.
    Alberty, R. A.: Standard Gibbs free energy, enthalpy and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates. J. biol. Chem. 244, 3290–3302 (1969)PubMedGoogle Scholar
  44. 44.
    Martin, V. S., Sokolov, J. S., Boguslavsky, L. I., Janskinsky, L. S.: Nigericin induced charge transfer across membranes. J. Membr. Biol. 25, 23–46 (1973)Google Scholar
  45. 45.
    Witt, T. H.: Primary acts of energy conservation in the functional membrane of photosynthesis. (1974) Ann. N. Y. Acad. Sci. 227, 203–206 (1974)PubMedCrossRefGoogle Scholar
  46. 46.
    Brand, M. D., Reynafarje, B., Lehninger, A. L.: Stoichiometric relationship between H+ and electron transport. Proc. nat. Acad. Sci. (Wash.) 73, 437–441 (1976)PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Schackmann, R., Schwartz, A., Saccomani, G., Sachs, G.: Cation transport by gastric H++K+ ATPase. J. Membr. Biol. 32, 361–381 (1977)PubMedCrossRefGoogle Scholar
  48. 48.
    Scarborough, G. A.: The neurospora plasma membrane ATPase is an electrogenic pump. Proc. nat. Acad. Sci. 73, 1485–1488 (1976)PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Azzi, A., Gheradini, P., Santato, P.: Flurochrome interaction with the mitochondrial membrane. J. biol. Chem. 246, 2035–2042 (1971)Google Scholar
  50. 50.
    Lewin, M., Saccomani, G., Schackmann, R., Sachs, G.: Use of ANS as a probe of gastric vesicle transport. J. Membr. Biol. in press 32, 301–318 (1977)PubMedCrossRefGoogle Scholar
  51. 51.
    Goodall, M. C., Sachs, G.: Reconstitution of a proton pump. J. Membr. Biol. in press (1977)Google Scholar
  52. 52.
    Hogben, C.A.M.: The Cl transport system of gastric mucosa. Proc. nat. Acad. Sci. 37, 343–395 (1951)CrossRefGoogle Scholar
  53. 53.
    Sachs, G., Shoemaker, R. L., Hirschowitz, B. I.: Effect of Na removal from in vitro frog gastric mucosa. Proc. Soc. exp. Biol. (N. Y.) 123, 47–52 (1966)PubMedCrossRefGoogle Scholar
  54. 54.
    Heinz, E., Durbin, R. P.: Evidence for an independent H+ ion pump in the stomach. Biochim. biophys. Acta 31, 246–247 (1959)PubMedCrossRefGoogle Scholar
  55. 55.
    Sarau, H. M., Foley, J., Moonsamy, G., Wiebelhaus, V. D., Sachs, G.: Metabolism of dog gastric mucosa. J. biol. Chem. 250, 8321–8329 (1975)PubMedGoogle Scholar
  56. 56.
    Durbin, R. P., Michelangeli, F., Michel, A.: Active transport and ATP in frog gastric mucosa. Biochim. biophys. Acta 357, 177–189 (1974)CrossRefGoogle Scholar
  57. 57.
    Sedar, A. W.: Fine structure of the stimulated oxyntic cell. Fed. Proc. 24, 1360–1367 (1965)PubMedGoogle Scholar
  58. 58.
    Helander, H. F., Hirschowitz, B. I.: Quantitative ultrastructural studies on gastric parietal cells. Gastroenterology 63, 951–961 (1972)PubMedGoogle Scholar
  59. 59.
    Harris, J. B., Frank, H., Edelman, I. S.: Effect of K+ on ion transport and biolectric potentials of frog gastric mucosa. Amer. J. Physiol. 195, 499–504 (1958)PubMedGoogle Scholar
  60. 60.
    Rehm, W. S., Sanders, S. S., Rutledge, J. R., David, T. L., Kurfee, J. F., Keesee, D. C., Bajandas, F. J.: Effect of removal of external K+ on frog stomach in Cl free solutions. Amer. J. Physiol. 210, 689–693 (1966)PubMedGoogle Scholar
  61. 61.
    Hirschowitz, B. I., Sachs, G.: Insulin inhibition of gastric secretion reversal by Rb+. Amer. J. Physiol. 213, 1401–1405 (1967)PubMedGoogle Scholar
  62. 62.
    Sachs, G., Collier, R. H., Pacifico, A., Hirschowitz, B. I.: Action of SCN on gastric mucosa in vitro. Biochim. biophys. Acta 173, 504–507 (1969)CrossRefGoogle Scholar
  63. 63.
    Rehm, W. S.: Electrophysiology of gastric mucosa in Cl free solutions. Fed. Proc. 24, 1387–1395 (1965)PubMedGoogle Scholar
  64. 64.
    Sachs, G., Mihas, A., Crago, S., Saccomani, G.: Localization of a gastric H+ pump component. Gastroenterology Abstr. 72, 1125 (1977)Google Scholar
  65. 65.
    Rabon, E.C., Sarau, H.M., Rehm, W.S., Sachs, G.: Redox involvement in acid secretion in the amphibian gastric mucosa. J. Membr. Biol. in press (1977)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  1. 1.Laboratory of Membrane BiologyUniversity of Alabama in BirminghamBirminghamUSA

Personalised recommendations