The physiology, pharmacology, and biochemistry of the eccrine sweat gland

Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 79)


Myoepithelial Cell Sweat Gland Sweat Rate Eccrine Sweat Gland Sweat Duct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, R. E., Bartos, D., Bartos, F., Castro, A., Dobson, R. L., Crettie, D. P., Kramer, R., Macfarlane, D., Sato, K.: Activation of aldosterone and renin secretion by thermal stress. Experientia (Basel) 28, 259–160 (1971)Google Scholar
  2. Bartoli, E., Conger, J. D., Earley, L. E.: Effect of intraluminal flow on proximal tubular reabsorption. J. clin. Invest. 52, 843–849 (1973)PubMedCentralPubMedGoogle Scholar
  3. Batzri, S., Selinger, Z.: Enzyme secretion mediated by the epinephrine β-receptor in rat parotid slices. J. biol. Chem. 248, 356–360 (1973)PubMedGoogle Scholar
  4. Batzri, S., Selinger, Z., Schramm, M.: Potassium ion release and enzyme secretions. Adrenergic regulation by α-and β-receptors. Science. 174, 1029–1031 (1971)PubMedGoogle Scholar
  5. Batzri, S., Selinger, Z., Schramm, M., Robinovitch, M. R.: Potassium release mediated by the epinephrine α-receptor in rat parotid slices. J. biol. Chem. 248, 361–368 (1973)PubMedGoogle Scholar
  6. Bdolah, A., Ben-zvi, R., Schramm, M.: The mechanism of enzyme secretion by the cell. II. Secretion of amylase and other proteins by slices of rat parotid gland. Arch. Biochem. 104, 58–66 (1964)PubMedGoogle Scholar
  7. Bdolah, A., Schramm, M.: The function of 3′, 5′-cyclic AMP in enzyme secretion. Biochem. Biophys. Res. Commun. 18, 452–454 (1965)PubMedGoogle Scholar
  8. Berridge, M. J., Prince, W. T.: The electrical response of isolated salivary glands during stimulation with 5-hydroxytryptamine and cyclic AMP. Philos. Trans. roy. Soc. Lond. [Biol.] B262, 111–120(1971)Google Scholar
  9. Brusilow, S. W.: The permeability of the sweat gland to nonelectrolytes. Mod. Probl. Pädiat. 10, 32–40 (1967)Google Scholar
  10. Brusilow, S. W., Gordes, E. H.: Determination of sweat gland precursor fluid osmolarity by direct cryoscopy. J. clin. Invest. 42, 920–921 (1963)Google Scholar
  11. Brusilow, S. W., Gordes, W. H.: Ammonia secretion in sweat. Amer. J. Physiol. 214, 513–517 (1967)Google Scholar
  12. Brusilow, S. W., Munger, B.: Comparative physiology of sweat. Proc. Soc. exp. Biol. (N.4.) 110, 317–319 (1962)PubMedGoogle Scholar
  13. Bulmer, M. G., Forwell, G. D.: The concentration of sodium in thermal sweat. J. Physiol. (Lond.) 132, 115–122 (1956)PubMedCentralPubMedGoogle Scholar
  14. Burg, M. B., Grantham, J., Abramow, M., Orloff, J.: Preparation and study of fragments of single rabbit nephrons. Amer. J. Physiol. 210, 1293–1298 (1966)PubMedGoogle Scholar
  15. Burg, M. B., Green, N.: Function of the thick ascending limb of Henle's loop. Amer. J. Physiol. 224, 659–668 (1973)PubMedGoogle Scholar
  16. Burg, M. B., Orloff, J.: Electrical potential difference across proximal convaluted tubules. Amer. J. Physiol. 219, 1714–1716 (1970)PubMedGoogle Scholar
  17. Burg, M. B., Stoner, L., Cardinal, J., Green, N.: Furosemide effect on isolated perfused tubules. Amer. J. Physiol. 225, 119–124 (1973)PubMedGoogle Scholar
  18. Butcher, F. R.: The role of calcium and cyclic nucleotides in α-amylase release from slices of rat parotid: studies with the divalent cation ionophore A23187. Metabolism 24, 409–418 (1975)PubMedGoogle Scholar
  19. Cage, G. W., Dobson, R. L.: Effect of asteroid, diuretics and pitressin on sodium excretion by the sweat gland. Fed. Proc. 24, 280 (1965a)Google Scholar
  20. Cage, G. W., Dobson, R. L.: Sodium secretion and reabsorption in the human eccrine sweat gland. J. clin. Invest. 44, 1270–1276 (1965b)PubMedCentralPubMedGoogle Scholar
  21. Cage, G. W., Dobson, R. L., Waller, R.: Sweat gland function in cystic fibrosis. J. clin. Invest. 45, 1373–1378(1966)PubMedCentralPubMedGoogle Scholar
  22. Cage, G. W., Wolfe, S. M., Thompson, R. H., Gordon, Jr., R. S.: Effects of water intake on composition of thermal sweat in normal human volunteers. J. appl. Physiol. 29, 687–690 (1970)PubMedGoogle Scholar
  23. Cereijido, M., Herrera, F. C., Flanigan, W. J., Curran, P. F.: The influence of Na concentration on Na transport across frog skin. J. gen. Physiol. 47, 879–893 (1964)PubMedCentralPubMedGoogle Scholar
  24. Chalmers, T. M., Keele, C. A.: Physiological significance of the sweat response to adrenaline in man. J. Physiol. (Lond.) 114, 510–514 (1951)PubMedCentralPubMedGoogle Scholar
  25. Cier, J. F., Manuel, Y., Lacour, J. R.: Electrophoretic study of the proteins of human sweat. Paper electrohoresis, immunoelectrophoresis and starch gel electrophoresis. C. R. Soc. Biol. (Paris) 157, 1623–1626 (1963)Google Scholar
  26. Cohen, J. J., Barac-Nieto, M.: Renal metabolism of substrates in relation to renal function. In: Handbook of Physiology. Sect. 8: Renal Physiology. Orloff, J., Berliner, R. W. (eds.). Baltimore: The Williams & Wilkins Company 1973, pp. 909–1001.Google Scholar
  27. Collins, K. J.: Composition of plasma and forearm sweat. J. appl. Physiol. 17, 99–102 (1962)PubMedGoogle Scholar
  28. Conn, J. W., Louis, L. H., Johnston, M. W., Johnson, B. J.: The electrolyte content of thermal sweat as an index of adrenal cortical function. J. clin. Invest. 27, 529–530 (1948)PubMedGoogle Scholar
  29. Coon, J. M., Rothman, S.: The sweat response to drugs with nocotine-like action. J. Pharmacol. exp. Ther. 23, 1–11 (1941)Google Scholar
  30. Dale, H. H., Feldberg, W.: The chemical transmission of secretory impulses to the sweat glands of cat. J. Physiol. (Lond.) 82, 121–128 (1934)PubMedCentralPubMedGoogle Scholar
  31. Daniel, E. E., Paton, D. M., Taylor, G. S., Hodgson, B. J.: Adrenergic receptors for catecholamine effect on tissue electrolytes. Fed. Proc. 29, 1410–1425 (1970)PubMedGoogle Scholar
  32. Diamond, J. M.: The reabsorptive function of the gall bladder. J. Physiol. (Lond.) 161, 442–473 (1962)PubMedCentralPubMedGoogle Scholar
  33. Diamond, J. M., Bossert, W. H.: Standing-gradient osmatic flow. A mechanism of coupling of water and solute transport in epithelia. J. Am. Physiol. 50, 2061–2083 (1967)Google Scholar
  34. Diamond, J. M., Bossert, W. H.: Functional consequences of ultrastructural geometry in backward's fluid transporting epithelia. J. Cell Biol. 37, 694–702 (1968)PubMedCentralPubMedGoogle Scholar
  35. Dobson, R. L.: The effect of repeated episodes of profuse sweating on the eccrine sweat glands. J. invest. Derm. 35, 195–198 (1960)PubMedGoogle Scholar
  36. Dobson, R. L.: The correlation of structure and function in the human eccrine sweat gland. In: Advances in Biology of Skin. Montagna, W., Ellis, R. A., Silver, A. F. (eds.). New York: Appleton-Century-Crafts 1962, Vol. III, pp. 54–75.Google Scholar
  37. Dobson, R. L., Sato, K.: The stimulation of eccrine sweating by pharmacologic agents. In: Advances in Biology of Skin. Montagna, W., Stoughton, R. B., van Scott, E. J. (eds.). New York: Appleton-Century-Crafts 1972, Vol. XII, pp. 447–475.Google Scholar
  38. Dobson, R. L., Siegers, J. F. R.: The ffect of aldosterone on sweating in the cat. J. invest. Derm. 56, 337–339 (1971)PubMedGoogle Scholar
  39. Dorey, G., Bhoola, K. D.: Ultrastructure of acinar cell granules in mammalian submaxillary glands. Z. Zellforsch. 126, 320–334 (1972)PubMedGoogle Scholar
  40. Douglas, W. W.: Stimulus-secretion coupling: the concept and clues from chromatin and other cells. The first gaddum memorial lecture. Cambridge, Br. J. Pharmacol 34, 451–474 (1968)Google Scholar
  41. Douglas, W. W.: Involvement of calcium in exocytosis and the exocytosis-vesiculation sequence. In: Calcium and Cell Regulation. Smellie, R. M. S. (ed.). London: The Biochemical Society 1971, Vol. XXXIX, pp. 1–28Google Scholar
  42. Ellis, R. A.: Eccrine sweat glands. In: Handbuch der Haut und Geschlechtskrankheiten. I Band. Normale und Pathologische Anatomie der Haut. Jadassohn, J. (ed.). Berlin-Heidelberg-New York: Springer 1967Google Scholar
  43. Emrich, H. M., Oelert, H.: pH-Wert und Gesamtammoniak im menschlichen Schweiss. Pfluegers Arch. 290, 311–314 (1966)Google Scholar
  44. Emrich, H. M., Ullrich, K. J.: Auscheidung verschiedener Stoffe in Schweiss in Abhängigkeit von der Schweissflussrate. Pfluegers Arch. ges. Physiol. 290, 298–310 (1966)Google Scholar
  45. Emrich, H. M., Stoll, E., Friolet, B., Colombo, J. P., Rossi, E., Richterich, R.: Excretion of different substances in sweat of children with cystic fibrosis and control. Mod. Probl. Pädiat. 10, 58–73 (1967)Google Scholar
  46. Emrich, H. M., Zwiebel, R. K. H.: Veränderungen des Lactat-Pyruvat-Quotienten im menschlichen Schweiss bei verschieden starkem Schwitzen. Pfluegers Arch. ges. Physiol. 290, 315–319 (1966)Google Scholar
  47. Fasciolo, J. C., Totel, G. L., Johnson, R. E.: Antidiuretic hormone and human eccrine sweating. J. appl. Physiol. 27, 303–307 (1969)PubMedGoogle Scholar
  48. Flores, J., Witkum, P., Beckman, B., Sharp, G. W. G.: Reserve of vasopressin-sensitive adenyltate cyclase in toad urinary bladder. Biochim. Biophys. Acta 362, 501–508 (1974)PubMedGoogle Scholar
  49. Förström, L., Goldyne, M. E., Winkelmann, R. K.: Prostaglandin activity in human eccrine sweat. Prostaglandins 7, 459–464 (1974)PubMedGoogle Scholar
  50. Förström, L., Goldyne, M. E., Winkelmann, R. K.: IgE in human eccrine sweat J. invest. Derm. 64, 156–157(1975)PubMedGoogle Scholar
  51. Fortney, J. A.: Crytology of eccrine sweat glands in the opossum. Amer. J. Anat, 136, 205–219 (1973)PubMedGoogle Scholar
  52. Foster, K. G.: Composition of the secretion from the eccrine sweat glands of the cat's foot pad. J. Physiol. (Lond.) 184, 106–119 (1966)PubMedCentralPubMedGoogle Scholar
  53. Foster, K. G.: Factors affecting the quantitative response of human eccrine sweat glands to intradermal injections of acetylcholine and methacholine. J. Physiol. (Lond.) 213, 277–290 (1971)PubMedCentralPubMedGoogle Scholar
  54. Foster, K. G., Ginsburg, J., Weiner, J. S.: Role of circulating catecholamines in human eccrine sweat gland control. Clin. Sci. 39, 823–832 (1970)PubMedGoogle Scholar
  55. Foster, K. G., Haspinall, J. R., Mollel, C. L.: Effect of propranolol on the response of human eccrine glands to acetylcholine. Brit. J. Derm. 85, 363–367 (1971)PubMedGoogle Scholar
  56. Foster, K. G., Weiner, J. S.: Effects of cholinergic and adrenergic blocking agents on the activity of the eccrine sweat glands. J. Physiol. (Lond.) 210, 883–895 (1970)PubMedCentralPubMedGoogle Scholar
  57. Fräki, J. E., Jansen, C. T., Hopsu-Havu, V. K.: Human sweat kallikrein: biochemical demonstration and chromatographic separation from several other esteropeptidases in the sweat. Acta derm.-venerol. (Stockh.) 50, 321–326 (1970)PubMedGoogle Scholar
  58. Frewin, D. B., Eakin, K. E., Downey, J. A., Bhattachejee, P.: Prostaglandin-like activity in human eccrine sweat. Aust. J. exp. Biol. med. Sci. 51, 701–702 (1973)PubMedGoogle Scholar
  59. Fritz, M. E., Grampp, W.: The action of dibutyryl adenosine-3′:5′-cyclic monophosphoric acid and theophylline on the isolated cat parotid gland. Acta physiol. scand. 93, 352–363 (1975)PubMedGoogle Scholar
  60. Frizzell, R. A., Ducas, M. C., Schultz, S. G.: Sodium chloride transport by rabbit gall bladder. Direct evidence for a coupled NaCl influx process. J. gen. Physiol. 65, 769–795 (1975)PubMedGoogle Scholar
  61. Frömter, E.: The route of passive ion movement through the epithelium of Necturus gall bladder. J. Membr. Biol. 8, 259–301 (1972)PubMedGoogle Scholar
  62. Frömter, E., Diamond, J.: Route of passive ion permeation in epithelia. Nature [New Biol.] 235, 9–13 (1972)Google Scholar
  63. Garden, J. W.: Plasma and sweat histamine concentration after heat exposure and physical exercise. J. appl. Physiol. 21, 631–635 (1966)PubMedGoogle Scholar
  64. Gibs, G. E., Griffin, G., Reimer, K.: Quantitative microdetermination of enzymes in sweat gland. Pediat. Res. 1, 24–26 (1967).Google Scholar
  65. Gitlitz, P. H., Sunderman, F. W., Hohnadel, D. C.: Ion-exchange chromatography of amino acids in sweat collected from healthy subjects during sauna bathing. Clin. Chem. 20, 1305–1312 (1974)PubMedGoogle Scholar
  66. Granata, L., Braga, E. C., Cevese, A., Data, P. G.: Beta adrenergic receptor activity in peripheral vascular beds of the unanesthetized dog. Pflügers Arch. ges. Physiol. 320, 64–78 (1970)Google Scholar
  67. Grand, J. R., Di Sant'agnese, P. A., Talamo, R. C., Pallavicini, J. C.: The effects of exogenous aldosterone on sweat electrolytes. I. Normal subjects. Pediatrics 70, 346–356 (1967)Google Scholar
  68. Grandchamp, A., Scherrer, J. R., Veyrat, R., Muller, A. F.: I. Measurement of sweat sodium and potassium excretion for evaluation of mineralocorticoid activity in normal subjects. Helv. med. Acta 34, 367–385 (1968)Google Scholar
  69. Haimovici, H.: Evidence for adrenergic sweating in man. J. appl. Physiol. 2, 512–521 (1950)PubMedGoogle Scholar
  70. Harden, R. M., Alexander, W. D.: Quantitative aspects of iodide excretion in human thermal sweat. Clin. Sci. 25, 79–87 (1963)PubMedGoogle Scholar
  71. Hashimoto, K., Gross, B. G., Lever, W. F.: The ultrastructure of the skin of human embryos. I. Intraepidermal eccrine sweat duct. J. invest. Derm. 45, 139–151 (1965)PubMedGoogle Scholar
  72. Hayashi, H.: Functional activity of the sweat glands of the mouse. Tohoku J. exp. Med. 95, 289–295 (1968)PubMedGoogle Scholar
  73. Hemels, H. G. W. M.: The effect of propranolol on the acetylcholine-induced sweat response in atopic and non-atopic subject. Brit. J. Derm. 83, 312–314 (1970)PubMedGoogle Scholar
  74. Hermann, W. P., Habbig, J.: Immunological demonstration of multiple esterases in human eccrine sweat. Brit. J. Derm. 95, 67–70 (1976)Google Scholar
  75. Hittelman, K. J., Butcher, R. W.: Cyclic AMP and the mechanism of action on the prostaglandins. In: The Prostaglandins. Cuthbert, (ed.). London: William Heinemann Medical Books Ltd. 1973, pp. 151–165.Google Scholar
  76. Hohnadel, D. C., Sunderman, F. W., Nechay, M. W., McNeely, M. D.: Atomic absorption spectrometry of nickel, copper, zinc and lead in sweat collected from healthy subjects during sauna bathing. Clin. Chem. 19, 1288–1292 (1973)PubMedGoogle Scholar
  77. Ikai, K., Sakamoto, M., Takaba, H., Nitta, H.: Planter sweat electrolyte concentration in the dog: effect of exogenous aldosterone on the sweat electrolyte concentration — discussion on ductal reabsorption in the sweat duct. Nagoya med. J. 15, 33–45 (1969)PubMedGoogle Scholar
  78. Ikai, K., Sato, Koji, Kozawa, H., Nitta, H.: Palmer or planter sweat electrolyte concentration in the monkey. II. Effects of adrenergic mechanism on the sweat electrolyte concentration. Proc. Jap. Acad. 46, 203–208 (1970)Google Scholar
  79. Jenkinson, D. M.: Sweat gland function in domestic animals. In: The Exocrine Glands. Ed. Botelho, S., Brooke, F., Sherry, W. (eds.). Philadelphia: University of Pennsylvania 1968, pp. 201–214.Google Scholar
  80. Jenkinson, D. M., Mabon, R. M.: The effect of temperature and humidity on skin surface pH and the ionic composition of skin secretion in Ayrshire cattle. Brit. vet. J. 129, 282–294 (1973)Google Scholar
  81. Jirka, M., Kotas, J.: Some observations on the chemical composition of horse sweat. J. Physiol. (Lond.) 145, 74–77 (1959)Google Scholar
  82. Jirka, M.: Micro-disc electrophoresis of proteins in pilocarpine-induced sweat. Febs Lett. 4, 28–30 (1969)PubMedGoogle Scholar
  83. Johnson, K. G.: Sweating rate and the electrolyte content of skin secretions of Bos taurus and Bos indicus cross-bred cows. J. Agric. Camb. 25, 397–402 (1970)Google Scholar
  84. Johnson, R. F., Pitts, G. C., Consolazio, F. C.: Factors influencing chloride concentration in human sweat. Amer. J. Physiol. 141, 575–589 (1944)Google Scholar
  85. Kagayama, M., Nishiyama, A.: Membrane potential and input resistance in acinar cells from cat and rabbit submaxillary glands in vivo: effect of autonomic nerve stimulation. J. Physiol. (Lond.) 242, 157–172(1974)PubMedCentralPubMedGoogle Scholar
  86. Kahn, D., Rothman, S.: Sweat responses to acetylcholine. J. invest. Derm. 5, 431–444 (1942)Google Scholar
  87. Kaiser, D., Drack, E.: Dimished excretion of bicarbonate from the single sweat gland of patients with cystic fibrosis of the pancreas. Eur. J. clin. Invest. 4, 261–265 (1974)PubMedGoogle Scholar
  88. Kaiser, D., Songo-Williams, S., Drack, E.: Hydrogen ion and electrolyte excretion of the single human sweat gland. Pflügers Arch. ges. Physiol. 349, 63–72 (1974)Google Scholar
  89. Katz, J., Wood, H. G.: The use of 14CO2 yields from glucose 1-and-6-14C for the evaluation of pathway of glucose metabolism. J. biol. Chem. 238, 517–523 (1963)PubMedGoogle Scholar
  90. Knauf, H., Frömter, E.: Die Kationenausscheidung der grossen Speicheldrüsen des Menschen. Pflügers Arch. ges. Physiol. 316, 213–237 (1970)Google Scholar
  91. Knauf, H., Frömter, E.: Studies on the origin of the transepithelial electrical potential difference in the salivary duct epithelium. In: Electrophysiology of Epithelial Cells. Giebish, G. (ed.). Stuttgart-New York: Schattauer Verlag 1971, pp. 187–206.Google Scholar
  92. Koelz, H. R., Kondo, S., Blum, A. L., Schulz, I.: Calcium ion uptake induced by cholinergic and α-adrenergic stimulation in isolated cells of rat salivary glands. Pflügers Arch. ges. Physiol., in press 1977Google Scholar
  93. Kondo, S., Schulz, I.: Ca++ fluxes in isolated cells of rat pancreas. Effect of secretagogues and different Ca++ concentrations. J. Membr. Biol. 29, 185–203 (1976 a)Google Scholar
  94. Kondo, S., Schulz, I.: Calcium ion uptake in isolated pancreas cells induced by secretagogues. Biochim. Biophys. Acta 419, 76–92 (1976b)PubMedGoogle Scholar
  95. Kuno, Y.: Human perspiration. Springfield, Illinois: C. C. Thomas 1956.Google Scholar
  96. Kuno, Y.: The mechanism of human sweat secretion. Proc. int. Congr. Physiol. Sci. 23rd, Tokyo, Japan. 5, 8–22 (1965)Google Scholar
  97. Leslie, B. A., Putney, Jr., J. W., Sherman, J. M.: α-adrenergic, β-adrenergic and cholinergic mechanisms for amylase secretion by rat parotid gland in vitro. J. Physiol. (Lond.) 260, 351–370 (1976)PubMedCentralPubMedGoogle Scholar
  98. Lloyd, D. P. C.: Secretion and reabsorption in sweat glands. Proc. nat. Acad. Sci. (Wash.) 45, 405–409 (1959a)PubMedCentralPubMedGoogle Scholar
  99. Lloyd, D. P. C.: Response of cholinergically innervated sweat glands to adrenaline and noradrenaline. Nature (Lond.) 184, 277–278 (1959b)PubMedGoogle Scholar
  100. Lloyd, D. P. C.: Secretion and reabsorption in eccrine sweat gland. In: Advances in Biology of Skin. Montagna, W. (ed.). Oxford-London-New York-Paris: Pergamone Press 1962, pp. 127–151.Google Scholar
  101. Locke, W., Talbot, N. F., Johnes, H. S., Worcester, J.: Studies on the combined use of measurements of sweat electrolyte composition and rate of sweating as an index of adrenal cortical activitiy. J. clin. Invest. 30, 325–332 (1951)PubMedCentralPubMedGoogle Scholar
  102. Love, A. H. G., Shanks, R. G.: The relationship between the onset of sweating and vasodilation in the forearm during body heating. J. Physiol. (Lond.) 162, 121–128 (1962)PubMedCentralPubMedGoogle Scholar
  103. Mangos, J. A.: Microperfusion study of the sweat gland abnormality in cystic fibrosis. Tex. Rep. Biol. Med. 31, 651–663 (1973a)PubMedGoogle Scholar
  104. Mangos, J. A.: Transductal fluxes of Na, K and water in the human eccrine sweat gland. Amer. J. Physiol. 224, 1235–1240 (1973b)PubMedGoogle Scholar
  105. Mangos, J. A., McSherry, N. R., Barber, T.: Dispersed rat parotid acinar cells. III. Characterization of cholinergic receptors. Amer. J. Physiol. 229, 566–569 (1975a)PubMedGoogle Scholar
  106. Mangos, J. A., McSherry, N. R., Barber, T., Arvanitakis, S. N., Wagner, V.: Dispersed rat parotid acinar cells. II. Characterization of adrenergic receptors. Amer. J. Physiol. 229, 560–565 (1975b)PubMedGoogle Scholar
  107. Mangos, J. A., McSherry, N. R., Benke, P. J., Speck, A.: A.: Studies on the pathogenesis of cystic fibrosis: the isoproterenol treated rat as an experimental model. In: 5th International Cystic Fibrosis Conference. Cambridge: Churchill College 1969 pp. 25–36.Google Scholar
  108. Montagna, W.: Histology and cytochemistry of human skin XIX. The development and fate of the axillary organ. J. invest. Derm. 33, 151–160 (1959)PubMedGoogle Scholar
  109. Morimoto, T., Johnson, R. E.: Ammonia and the regulations of activity in human eccrine sweat. Nature (Lond.) 216, 813–814 (1967)PubMedGoogle Scholar
  110. Munger, B. L., Brusilow, S. W.: An electron microscopic study of eccrine sweat glands of cat foot and toe pads — evidence for ductal reabsorption in the human. J. biophys. biohcem. Cytol. 11, 403–417(1961)Google Scholar
  111. Nakamura, Y., Hatanaka, K.: Effect of denervation of the cat's sweat lands to their responsiveness to adrenaline, nicotine and Mecholyl. Tohoku J. exp. Med. 68, 225–237 (1958)Google Scholar
  112. Nishiyama, A., Petersen, O. H.: Pancreatic acinar cells: ionic dependence of acetylcholine-induced membrane potential and resistance change. J. Physiol. (Lond.) 244, 432–465 (1975)Google Scholar
  113. Page, C. O., Remington, J. S.: Immunologic studies in normal human sweat. J. Lab. clin. Med. 69, 634–650 (1967)PubMedGoogle Scholar
  114. Pallavicini, J. C., Gabriel, O., Disant'Agnese, P. A., Buskirk, E. R.: Isolation and characterization of carbohydrate-protein complex from human sweat. Ann. N. Y. Acad. Sci. 106, 330–338 (1963)Google Scholar
  115. Pearcy, M., Robinson, S., Miller, D. E., Thomas, Jr., J. T., Debrota, J.: Effects of dehydration, salt depletion and pitressin on sweat rate and urine flow. J. appl. Physiol. 8, 621–626 (1955–1956)Google Scholar
  116. Petersen, O. H.: Electrogenic sodium pump in pancreatic acinar cells. Proc. Roy Soc. B184, 115–119 (1973)Google Scholar
  117. Petersen, O. H.: Electrophysiological studies on gland cells. Experientia (Basel) 30, 130–134 (1974).PubMedGoogle Scholar
  118. Prince, W. T., Berridge, M. J.: The effect of 5-hydroxy-tryptamine and cyclic AMP on the potential profiles across isolated salivary glands. J. exp. Biol. 56, 323–333 (1972)PubMedGoogle Scholar
  119. Prince, W. T., Rasmussen, H., Berridge, M. J.: The role of calcium in fly salivary gland secretion analyzed with the ionophore A23187. Biochim. Biophys. Acta 329, 98–107 (1973)PubMedGoogle Scholar
  120. Prout, B. J., Wardell, W. M.: Sweating and peripheral blood flow in patients with phaechromocytona. Clin. Sci. 36, 109–117 (1969)PubMedGoogle Scholar
  121. Quatrale, R. P., Laden, K.: Solute and water secretion by the eccrine sweat glands of the rat. J. invest. Derm. 51, 502–504(1968)PubMedGoogle Scholar
  122. Quatrale, R. P., Spier, E. H.: The effect of ADH on eccrine sweating in the rat. J. invest. Derm. 55, 344–349 (1970)PubMedGoogle Scholar
  123. Radtke, H. W., Rumrich, G., Kinne-Saffran, E., Ullrich, K. J.: Dual action of acetazolamide and furosemide on proximal volume absorption in the rat kidney. Kidney Int. 1, 100–105 (1972)PubMedGoogle Scholar
  124. Randal, W. C., Kimura, K. K.: The pharmacology of sweating. Pharmacol. Rev. 7, 365–397 (1955)Google Scholar
  125. Ratner, A. C., Dobson, R. L.: The effect of antidiuretic hormone on sweating. J. invest. Derm. 43, 379–381 (1964)PubMedGoogle Scholar
  126. Reas, H. W., Trendelenburg, U.: Changes in the sensitivity of the sweat glands of the cat after denervation. J. Pharmacol. exp. Ther. 156, 126–136 (1967)PubMedGoogle Scholar
  127. Reed, P. W., Lardy, H. A.: A23187: a divalent cation ionophore. J. biol. Chem. 247, 6970–6977 (1972)PubMedGoogle Scholar
  128. Richterich, R., Friolet, B.: The effect of acetazolamide on sweat electrolytes in mucoviscidosis. Metabolism 12, 1112–1121 (1963)PubMedGoogle Scholar
  129. Robertshaw, D., Taylor, C. R., Mazzia, L. M.: Sweating in primates: secretion by adrenal medulla during exercise. Amer. J. Physiol. 224, 678–681 (1973)PubMedGoogle Scholar
  130. Robinson, S., Robinson, A. H.: Chemical composition of sweat. Physiol. Rev. 34, 202–220 (1954)PubMedGoogle Scholar
  131. Rose, R. C., Schultz, S. G.: Studies on the electrical potential profile across rabbit ileum. J. gen. Physiol. 57, 639–663 (1971)PubMedCentralPubMedGoogle Scholar
  132. Rossignal, B., Herman, G., Chambaut, A. M., Kreyer, G.: The calcium ionophore A23187 as a probe for studying the role of Ca+ ions in the mediation of carbachol effects on rat salivary glands: protein secretion and metabolism of phospholipids and glycogen. FEBS Lett. 43, 241–246 (1974)Google Scholar
  133. Rothman, S.: Physiology and biochemistry of the skin. Chicago: The University of Chicago Press 1954, p. 189.Google Scholar
  134. Sakurai, M., Montagna, W.: Observation on the eccrine sweat glands of Lemur Mongoz after denervation. J. invest. Derm. 44, 87–92 (1965)PubMedGoogle Scholar
  135. Sargent, II., F.: Depression of sweating in man: so-called “sweat gland fatigue.” In: Advances in Biology of Skin. Ed. Montagna, W., Ellis, R. A., Silver, A. F. (eds.). Oxford-London-New York-Paris: Pergamon Press 1962, Vol. III, pp. 163–212.Google Scholar
  136. Sato, F., Burgers, M., Sato, K.: Some characteristics of adrenergic human eccrine sweating. Experientia (Basel) 30, 40–41 (1973)Google Scholar
  137. Sato, K.: Stimulation of pentose cycle in the eccrine sweat gland by adrenergic drugs. Amer. J. Physiol. 224, 1149–1154 (1973a)PubMedGoogle Scholar
  138. Sato, K.: Sweat induction from an isolated eccrine sweat gland. Am. J. Physiol. 225, 1147–1151 (1973b)PubMedGoogle Scholar
  139. Sato, K.: Inhibition of respiration in the eccrine sweat gland by ethacrynic acid. Pflügers Arch. ges. Physiol. 341, 223–241 (1973c)Google Scholar
  140. Sato, K.: Current knowledge on the energy metabolism and the secretory mechanism of the eccrine sweat glands. In: Secretory Mechanism of Exocrine Gland. Thorn, N. A., Petersen, O. H. (eds.). Copenhagen: Munksgaard 1974, pp. 588–607.Google Scholar
  141. Sato, K.: Electrophysiological studies of the rat paw eccrine sweat gland; a unique K-secreting epithelium. J. clin. Res. 23, 602A (1975)Google Scholar
  142. Sato, K., Dobson, R. L.: Regional and individual variations in the function of the human eccrine sweat gland. J. invest. Derm. 54, 443–449 (1970a)PubMedGoogle Scholar
  143. Sato, K., Dobson, R. L.: The effect of intracutaneous d-aldosterone and hydrocortisone on the human eccrine sweat gland function. J. invest. Derm. 54, 450–459 (1970b)PubMedGoogle Scholar
  144. Sato, K., Dobson, R. L.: Enzymatic basis for the active transport of sodium in the duct and the secretory portion of the eccrine sweat gland. J. invest. Derm. 55, 53–56 (1970 c)PubMedGoogle Scholar
  145. Sato, K., Dobson, R. L.: Glucose metabolism of the isolated eccrine sweat gland. I. The effect of Mecholyl, epinephrine and ouabain. J. invest. Derm. 56, 272–280 (1971)PubMedGoogle Scholar
  146. Sato, K., Dobson, R. L.: Glucose metabolism of the isolated eccrine sweat gland. II. The relation between glucose metabolism and sodium transport. J. clin. Invest. 52, 2166–2174 (1973)PubMedCentralPubMedGoogle Scholar
  147. Sato, K., Dobson, R. L., Mali, J. W. H.: Enzymatic basis for the active transport of sodium in the eccrine sweat gland. Localization and characterization of Na-K-ATPase. J. invest. Derm. 57, 10–16 (1971)PubMedGoogle Scholar
  148. Sato, K., Freibleman, C., Dobson, R. L.: The electrolyte composition of pharmacologically and thermally induced sweat: a comparative study. J. invest. Derm. 55, 433–438 (1970)PubMedGoogle Scholar
  149. Sato, K., Sato, F.: Pharmacological responsiveness of an isolated monkey palm eccrine sweat gland in vitro. J. clin. Res. (May, 1976)Google Scholar
  150. Sato, K., Taylor, J. R., Dobson, R. L.: The effect of ouabain on eccrine sweat gland function. J. invest. Derm. 53, 275–282 (1969)PubMedGoogle Scholar
  151. Schieferdicker, P.: Die Hautdrüsen des Menschen und der Säugetiere, ihre biologische und rassenanatomische Bedeutung, sowie die Muscularis sexualis. Biol. Zbl. 37, 534–562 (1917)Google Scholar
  152. Schmidt, V., Dubach, V. C.: Activity of Na+K-stimulated adenosine-triphosphatase in the rat nephron. Pflügers Arch. ges. Physiol. 306, 219–226 (1969)Google Scholar
  153. Schneyer, L. H.: Isoproterenol-induced stimulation of sodium absorption in perfused salivary gland duct. Amer. J. Physiol. 224, 136–139 (1973)PubMedGoogle Scholar
  154. Schneyer, L. H.: Effects of calcium on Na, K transport by perfused main duct of rat submaxillary gland. Amer. J. Physiol. 226, 821–826 (1974a)PubMedGoogle Scholar
  155. Schneyer, L. H.: Effect of luminal calcium on transport of Na and K by perfused main duct of rat submaxillary gland. In: Secretory Mechanisms of Exocrine Glands. Thorn, N. A., Petersen, O. H. (eds.). Copenhagen: Munksgaard 1974b, pp. 514–524.Google Scholar
  156. Schramm, M.: Secretion of enzymes and other macromolecules. Ann. Rev. Biochem. 36, 307–320 (1967)PubMedGoogle Scholar
  157. Schramm, M., Selinger, Z.: The functions of cyclic AMP and calcium as alternative second messengers in parotid gland and pancreas. J. Cycl. Nucl. Res. 1, 181–192 (1975)Google Scholar
  158. Schreurs, V. V. A. M., Swarts, H. G. P., Depont, J. J. H. H. M., Bonting, S. L.: Role of calcium in exocrine pancreatic secretion. II. Comparison of the effects of carbachol and the ionophore A23187 on enzyme secretion and calcium movements in rabbit pancreas. Biochim. Biophys. Acta 419, 320–333 (1976)PubMedGoogle Scholar
  159. Schulz, I.: Micropuncture studies of the sweat formation in cystic fibrosis patients. J. clin. Invest. 48, 1470–1477 (1969)PubMedCentralPubMedGoogle Scholar
  160. Schulz, I., Ullrich, K. J., Frömter, E., Holzgreve, H., Frick, A., Hegel, V.: Mikropunktion und electrische Potentialmessung an Schweissdrüsen des Menschen. Pflugers Arch. ges. Physiol. 284, 360–372(1965)Google Scholar
  161. Schwartz, I. L., Thaysen, J. H.: Excretion of sodium and potassium in human sweat. J. clin. Invest. 34, 114–120(1955)Google Scholar
  162. Scott, E. J. va, YU, R. J.: Control of keratinization with α-hydroxy acids and related compounds. I. Topical treatment of ichthyotic disorders. Arch. Derm. 110, 586–590 (1974)PubMedGoogle Scholar
  163. Seifert, G.: Experimental sialadenosis by isoproterenol and other agents: histochemistry and electronmicroscopy. In: Secretory Mechanisms of Salivary Glands. Schneyer, L. H., Schneyer, C. A. (eds.). New York: Academic Press 1967, pp. 191–208.Google Scholar
  164. Selinger, Z., Batzri, S., Eimerl, S., Schramm, M.: Calcium and energy requirements for K+ release mediated by the epinephrine α-receptor in rat parotid slices. J. biol. Chem. 248, 369–372 (1973)PubMedGoogle Scholar
  165. Selinger, Z., Eimerl, S., Schramm, M,: A calcium ionophore stimulating the action of epinephrine on the α-adrenergic receptor. Proc. nat. Acad. Sci. (Wash.) 71, 128–131 (1974)PubMedCentralPubMedGoogle Scholar
  166. Seutter, E., Sutorius, A. H. M.: The vitamin K derivatives of some skin-mucin. I. Properties and vitamin K origin. Int. J. Vitam. Nutr. Res. 41, 57–67 (1971)PubMedGoogle Scholar
  167. Seutter, E., Sutorius, A. H. M.: The quantitative analysis of some constituents of crude sweat. II. Zinc, copper, iron, sialic acid content and oxidative activity. Dermatologica (Basel 145, 203–209 (1972)PubMedGoogle Scholar
  168. Silver, A., Versau, A., Montagna, W.: Studies of sweating and sensory function in cases of peripheral nerve injuries of the hand. J. invest. Derm. 40, 243–258 (1963)PubMedGoogle Scholar
  169. Skou, J. C.: Enzymatic bases for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45, 596–619(1965)PubMedGoogle Scholar
  170. Slegers, J. F. G.: The mechanism of eccrine sweat gland function in normal subjects and in patients with mucoviscidosis. Dermatologica (Basel) 127, 242–254 (1963)Google Scholar
  171. Slegers, J. F. G.: The influx and outflux of sodium in the sweat gland. Dermatologica (Basel) 132, 152–174 (1966)PubMedGoogle Scholar
  172. Slegers, J. F. G.: A mathematical approach to the two-step reabsorption hypothesis. Mod. Probl. Pädiat. 10, 74–88 (1967)Google Scholar
  173. Slegers, J. F. G.: Mechnisms of nonelectrolyte transport through epithelial cells. u. c. In: The Exocrine Gland. Ed. Botelho, S. Y., Brook, F. P., Shelly, W. M. (eds.). Philadelphia: University of Pennsylvania Press 1969, pp. 133–151.Google Scholar
  174. Slegers, J. F. G.: Alterations in sweat gland function produced by pharmacological u. c. agents. In: Pharmacology and the Skin. Montagna, W. (ed.). New York: Appleton-Century-Crofts 1972, pp. 477–493.Google Scholar
  175. Slegers, J. F. G., Moon, W. M.: Effect of acetazolamide on the chloride shift and the sodium pump. Nature (Lond.) 220, 181–182 (1968)PubMedGoogle Scholar
  176. Slegers, J. F. G., Van't Hot-Grootenboer: The localization of sodium transport sites in a forward pumping system. Pflügers Arch. ges. Physiol. 327, 167–185 (1971)Google Scholar
  177. Slyke, D. D. van, Plazin, J.: Micromanometric analysis. Baltimore: Williams & Wilkins 1961, pp. 39–55.Google Scholar
  178. Smiles, K. A., Robinson, S.: Regulation of sweat secretion during positive and negative work. J. appl. Physiol. 30, 409–412(1971)PubMedGoogle Scholar
  179. Smith, A.: Histochemical differentiation of two forms of glycogen synthetase. J. Histochem. Cytochem. 18, 756–759(1970)PubMedGoogle Scholar
  180. Smith, A., Dobson, R. L.: Sweating and glycogenolysis in the palmer eccrine sweat glands of rhesus monkey. J. invest. Derm. 47, 313–316 (1966)PubMedGoogle Scholar
  181. Sonnenschein, R. R., Robrin, N., Janowitz, H. D., Grasoman, M. I.: Stimulation and inhibition of human sweat glands by intradermal sympathomimetic agents. J. appl. Physiol. 3, 523–581 (1951)Google Scholar
  182. Sorensen, V. W., Prasad, G.: On the fine structure of horse sweat glands. Z. Anat. Entwickl. Gesch. 139, 173–189(1973)Google Scholar
  183. Spicer, S. S., Martin, B. J., Simon, J. V.: The junctional complex associated body of human eccrine sweat gland. J. Cell Biol. 53, 582–586 (1972)PubMedCentralPubMedGoogle Scholar
  184. Stüttgen, G., Richter, S., Wildherger, D. Z.: Erfassung biogener Amine in tierischer sowie menschlicher Haut und deren Tumoren mit dünnschichtchromatographischer Methodik. I. Alkylamine, Colamine, Piperidin, Histamine, Spermine und Spermidine. Arch. klin exp. Derm. 230, 349–360 (1960)Google Scholar
  185. Sutherland, E. W.: On the biological role of cyclic AMP. J. Amer. med. Ass. 214, 1281–1288 (1970)Google Scholar
  186. Szabo, G.: The number of eccrine sweat glands in human skin. In: Advances in, Biology of Skin. Ed. Montagna, W., Ellis, R., Silver, A. (eds.). New York: Pergamon Press 1962, vol. III, pp. 1–5.Google Scholar
  187. Takahashi, Y.: Functional activity of the eccrine sweat glands in the toepads of the dog. Tokohu J. exp. Med. 83, 205–219 (1964)Google Scholar
  188. Terada, E.: Effects of adrenaline on human sweating. J. physiol. Soc. Jpn. 28, 176–183 (1966)Google Scholar
  189. Terzakis, J. A.: The ultrastructure of monkey eccrine sweat glands. Z. Zellforsch. 64, 493–509 (1964)PubMedGoogle Scholar
  190. Thaysen, J. H.: Handling of alkali metals by exocrine glands other than the kidney. In: Handbuch der Experimentellen Pharmakologie. Berlin: Springer 1960, Vol. XIII, Chap. 5, pp. 424–507.Google Scholar
  191. Thaysen, J. H., Thorn, N. A., Schwartz, I. L.: Excretion of sodium, potassium, chloride, and carbon dioxide in human parotid saliva. Amer. J. Physiol. 178, 155–159 (1964)Google Scholar
  192. Uno, H., Montagna, W.: Catecholamine-containing nerve terminals of the eccrine sweat glands of Macaques. Cell. Tiss. Res. 158, 1–13 (1975)Google Scholar
  193. Ussing, H. H.: Transport of electrolytes and water across the epithelia. Harvey Lect. Ser. 59, 1–30 (1965)Google Scholar
  194. Ussing, H. H., Zerahn, K.: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta physiol. scand. 23, 110–127 (1951)PubMedGoogle Scholar
  195. Vree, T. B., Th, A., Muskens, J. M., Rossum, J. M.: Excretion of amphetamines in human sweat. Arch. int. Pharmcodyn. 199, 311–317 (1972)Google Scholar
  196. Vreugdenhil, A. P., Roukema, P. A.: Comparison of the secretory processes in the parotid and sublingual gland of the mouse. I. Regulation of the secretory processes. Biochim. Biophys. Acta 413, 79–94 (1975)PubMedGoogle Scholar
  197. Wada, M.: Sudorific action of adrenaline on the human sweat glands and determination of their excitability. Science 111, 376–377 (1950)PubMedGoogle Scholar
  198. Warndorff, J. A.: The response of the sweat gland to acetylcholine in atopic subjects. Brit. J. Derm. 83, 306–311(1970)PubMedGoogle Scholar
  199. Warndorff, J. A.: The reponse of the sweat glands to β-adrenergic stimulation. Brit. J. Derm. 86, 282–285 (1972)PubMedGoogle Scholar
  200. Warndorff, J. A., Hamar, M. L.: The response of the sweat glands to β-adrenergic stimulation with isoprenaline. Brit. J. Derm. 90, 263–268 (1973)Google Scholar
  201. Weiner, I. S., Heyningen, R. E. van: Observations on lactate content of sweat. J. appl. Physiol. 4, 734–744 (1952)PubMedGoogle Scholar
  202. Williams, J. A.: Pancreatic acinar cells: use of a Ca++ ionophore to separate enzyme release from the earlier steps in stimulus-secretion coupling. Biochem. Biophys. Res. Commun. 60, 542–548 (1974)PubMedGoogle Scholar
  203. Williams, J. A.: Na dependence of in vitro pancreatic amylase release. Amer. J. Physiol. 229, 1023–1026 (1975)PubMedGoogle Scholar
  204. Wojcik, J. D., Grand, R. J., Kimberg, D. V.: Amylase secretion by rabbit parotid secretion. Biochim. Biophys. Acta 411, 25–262 (1975)Google Scholar
  205. Wolfe, S., Cage, G., Epstein, M., Tice, L., Miller, H., Gordon, R. S.: Metabolic studies of isolated human eccrine sweat glands. J. clin. Invest. 49, 1880–1884 (1970)PubMedCentralPubMedGoogle Scholar
  206. Wuster, R. D., McCook, R. D.: Influence of rate of change in skin temperature on sweating. J. appl. Physiol. 27, 237–240 (1969)Google Scholar
  207. Young, J. A., Martin, C. J.: The effect of a sympathomimetic and a parasympathomimetic drug on the electrolyte concentrations of primary and final saliva of the rat submaxillary gland. Pflügers Arch. ges. Physiol. 327, 285–302 (1971)Google Scholar
  208. Yuyama, H.: On the histological examination of distribution of glycogen in the skin of leprosy with special reference to the relationship between the function of the sweat glands and the changes of glycogen content. Jap. J. Derm. Urol. 37, 811–832 (1935)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  1. 1.Departments of Dermatology and PhysiologyState University of New York at BuffaloBuffaloUSA

Personalised recommendations