The binding of saxitoxin and tetrodotoxin to excitable tissue

Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 79)


Sodium Channel Giant Axon Equilibrium Dissociation Constant Squid Giant Axon Nerve Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. H., Chandler, W. K., Hodgkin, A. L.: Voltage-clamp experiments on striated muscle fibres. J. Physiol. (Lond.) 208, 607–644 (1970)PubMedCentralPubMedGoogle Scholar
  2. Adrian, R. H., Peachey, L. D.: Reconstruction of the action potential of frog sartorius muscle. J. Physiol. (Lond.) 235, 103–131 (1973)PubMedCentralPubMedGoogle Scholar
  3. Albuquerque, E. N., Warnick, J. E.: The pharmacology of batrachotoxin. IV. Interaction with tetrodotoxin on innervated and chronically denervated rat skeletal muscle. J. Pharmacol. exp. Ther. 180, 683–697(1972)PubMedGoogle Scholar
  4. Albuquerque, E. X.: The mode of action of batrachotoxin. Fed. Proc. 31, 1133–1138 (1972)PubMedGoogle Scholar
  5. Almers, N., Levinson, S. R.: Tetrodotoxin binding to normal and depolarized frog muscle and the conduction of a single sodium channel. J. Physiol. (Lond.) 247, 483–509 (1975)PubMedCentralPubMedGoogle Scholar
  6. Armstrong, C. M., Binstock, L.: Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. gen. Physiol. 48, 859–872 (1965)PubMedCentralPubMedGoogle Scholar
  7. Armstrong, C.M., Hille, B.: The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. J. gen. Physiol. 59, 388–400 (1972)PubMedCentralPubMedGoogle Scholar
  8. Baer, M., Best, P. M., Reuter, H.: Voltage-dependent action of tetrodotoxin in mammalian cardiac muscle. Nature (Lond.) 263, 344–345 (1976)PubMedGoogle Scholar
  9. Baker, P. F., Rubinson, K. A.: Chemical modification of crab nerves can make them insensitive to the local anaesthetics tetrodotoxin and saxitoxin. Nature (Lond.) 257, 412–414 (1975)PubMedGoogle Scholar
  10. Balerna, M., Fosset, M., Chicheportiche, R., Romey, G., Lazdunski, M.: Construction and properties of axonal membranes of crustacean nerves. Biochemistry 14, 5500–5511 (1975)PubMedGoogle Scholar
  11. Barnola, F. V., Villegas, R., Camejo, G.: Tetrodotoxin receptors in plasma membranes isolated from whole nerve fibres. Biochim. biophys. Acta 298, 84–94 (1973).PubMedGoogle Scholar
  12. Barrett, E. F., Barrett, J. N.: Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones. J. Physiol. (Lond.) 255, 737–774 (1976)PubMedCentralPubMedGoogle Scholar
  13. Benzer, T. I., Raftery, M. A.: Partial characterization of a tetrodotoxin-binding component from nerve membrane. Proc. nat. Acad. Sci. (Wash.) 69, 3634–3637 (1972)PubMedCentralPubMedGoogle Scholar
  14. Benzer, T. I., Raftery, M. A.: Solubilization and partial characterization of the tetrodotoxin binding component from nerve axons. Biochem. biophys. Res. Commun. 51, 939–944 (1973)PubMedGoogle Scholar
  15. Berg, D. K., Kelly, R. B., Sargent, P. B., Williamson, P., Hall, Z. W.: Binding of-bungarotoxin to acetylcholine receptors in in mammalian muscle. Proc. nat. Acad. Sci. (Wash.) 69, 147–151 (1972)PubMedCentralPubMedGoogle Scholar
  16. Blankenship, J. E.: Tetrodotoxin: from poison to powerful tool. Perspect. Biol. Med. 19, 509–526 (1976)PubMedGoogle Scholar
  17. Bordner, J., Thiessen, W. E., Bates, H. A., Rapoport, H.: The structure of a crystalline derivative of saxitoxin. The structure of saxitoxin. J. Amer. chem. Soc. 97, 6008–6012 (1975)Google Scholar
  18. Buchwald, H. D., Durham, L., Fischer, H. G., Harada, R., Mosher, H. S., Kao, C. Y., Fuhrman, F. A.: Identity of tarichatoxin and tetrodotoxin. Science 143, 474–475 (1964)PubMedGoogle Scholar
  19. Camougis, G., Takman, B. H., Tasse, J. R. P.: Potency difference between the zwitterion form and the cation form of tetrodotoxin. Science 156, 1625–1628 (1967)PubMedGoogle Scholar
  20. Catterall, W. A., Nirenberg, M.: Sodium uptake associated with activation of action potential ionophores of cultured neuroblastoma and muscle cells. Proc. nat. Acad. Sci. (Wash.) 70, 3759–3763 (1973)PubMedCentralPubMedGoogle Scholar
  21. Chacko, G. K., Barnola, F. V., Villegas, R., Goldman, D. E.: The binding of tetrodotoxin to axonal membrane fraction isolated from garfish olfactory nerve. Biochim. biophys. Acta 373, 308–312 (1974)PubMedGoogle Scholar
  22. Chang, C. C., Chen. T. F., Chuang, S-T.: N, O-di and N, N, O-tri (3H) acetyl α-bungaratoxins as specific labelling agents of cholinergic receptors. Brit. J. Pharmacol. 47, 147–160 (1973)Google Scholar
  23. Clark, A. J.: The mode of action of drugs on cells. Baltimore: Williams and Wilkins 1933.Google Scholar
  24. Colquhoun, D., Henderson, R., Ritchie, J. M.: The binding of labelled tetrodotoxin to non-myelinated nerve fibres. J. Physiol.. (Lond.) 227, 95–126 (1972)PubMedCentralPubMedGoogle Scholar
  25. Colquhoun, D., Henderson, R., Ritchie, J. M.: Discussion of paper by R. Levinson. Phil. Trans. B 270, 344–348 (1975).Google Scholar
  26. Colquhoun, D., Rang, H. P., Ritchie, J. M.: The binding of tetrodotoxin and α-bungarotoxin to normal and denervated mammalian muscle. J. Physiol. (Lond.) 240, 199–226 (1974)PubMedCentralPubMedGoogle Scholar
  27. Colquhoun, D., Ritchie, J. M.: The interaction of equilibrium between tetrodotoxin and mammalian non-myelinated nerve fibres. J. Physiol. (Lond.) 221, 533–553 (1972a)PubMedCentralPubMedGoogle Scholar
  28. Colquhoun, D., Ritchie, J. M.: The kinetics of the interaction between tetrodotoxin and mammalian non-myelinated nerve fibres. Molec. Pharmacol. 8, 285–292 (1972b)Google Scholar
  29. Conti, F., Hille, B., Neumcke, B., Nonner, W., Stämpfli, R.: Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier. J. Physiol. (Lond.) 262, 699–727 (1976a)PubMedCentralPubMedGoogle Scholar
  30. Conti, F., Hille, B., Neumcke, B., Nonner, W., Stämpfli, T.: Conductance of the sodium channel in myelinated nerve fibres with modified sodium inactivation. J. Physiol. (Lond.) 262, 729–742 (1976b)PubMedCentralPubMedGoogle Scholar
  31. Cuervo, L. A., Adelman, W. J,: Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon. J. gen. Physiol. 55, 309–335 (1970)PubMedCentralPubMedGoogle Scholar
  32. D'Arrigo, J.S.: Structural characteristics of the saxitoxin receptor on nerve. J. Membr. Biol. 29, 231–242 (1976).PubMedGoogle Scholar
  33. Deguchi, T.: Structure and activity in tetrodotoxin denervation. Jap. J. Pharmacol. 17, 267–278 (1967)PubMedGoogle Scholar
  34. Dorfman, L. M., Wilzbach, K. E.: Tritium labelling of organic compounds by means of an electric discharge. J. phys. Chem. 43, 799–801 (1959)Google Scholar
  35. Easton, D. M.: Garfish olfactory nerve: easily accessible source of numerous homogeneous non-myelinated axons. Science 172, 952–955 (1971)PubMedGoogle Scholar
  36. Eisenberg, R. S., Gage, P. W.: Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibres. J. gen. Physiol. 53, 279–297 (1969)PubMedCentralPubMedGoogle Scholar
  37. Evans, M. H.: Tetrodotoxin, saxitoxin and related substances: their application in neurobiology. Int. Rev. Neurobiol. 15, 83–166 (1972).PubMedGoogle Scholar
  38. Fambrough, D. M.: Revised estimates of extrajunctional receptor density in denervated rat diaphragm. J. gen. Physiol. 64, 468–472 (1974)PubMedCentralPubMedGoogle Scholar
  39. Freeman, A. R.: Electrophysiological activity of tetrodotoxin on the resting membrane of the squid giant axon. Comp. Biochem. Physiol. (A) 40, 71–82 (1971)Google Scholar
  40. Fuhrman, F. A.: Tetrodotoxin. Sci Am. 217 (2), 60–71 (1967)Google Scholar
  41. Ghazarossian, V. E., Schantz, E. J., Schnoes, H. K., Strong, F. M.: A biologically active hydrolysis products of saxitoxin. (1976) Biochem. and Biophys. Res. Comm. 68, 776–780Google Scholar
  42. Grampp, W., Harris, J. B., Thesleff, S.: Inhibition of denervation changes in skeletal muscle by blockers of protein synthesis. J. Physiol. (Lond.) 221, 743–754 (1971)Google Scholar
  43. Grinnel, A. D.: Phylogenetic gradation of resistance to tetrodotoxin and saxitoxin in puffer fishes and related fishes. In: Procedures First International Conference on Toxic Dinoflagellate Blooms. Lo Cicero (ed.). Wakefield, Mass: Massachusetts Science and Technology Foundation 1975, pp. 377–380Google Scholar
  44. Guillory, R. J., Rayner, M.D., D'Arrigo, J.S.: Covalent labeling of the tetrodotoxin recepted in excitable tissue. Science 196, 883–885 (1977)PubMedGoogle Scholar
  45. Hafemann, D. R.: Binding of radioactive tetrodotoxin to nerve membrane preparations. Biochim. biophys. Acta 266, 548–556 (1972)PubMedGoogle Scholar
  46. Hafemann, D., Unsworth, B. R.: Appearance of binding sites for radioactive tetrodotoxin during the development of mouse and chick brain. J. Neurochem. 20, 613–616 (1973)PubMedGoogle Scholar
  47. Hagiwara, S., Kidokoro, Y.: Na and Ca components of action potential in amphioxus muscle cells. J. Physiol. (Lond.) 219, 217–232 (1971)PubMedCentralPubMedGoogle Scholar
  48. Hagiwara, S., Nakajima, S.: Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine and manganese ions. J. gen. Physiol. 49, 793–806 (1966)PubMedCentralPubMedGoogle Scholar
  49. Harris, J. B., Marshall, M. W.: Tetrodotoxin-resistant action potentials in newborn rat muscle. Nature [New Biol.] 243, 191–192 (1973)Google Scholar
  50. Harris, J. B., Thesleff, S.: Studies on tetrodotoxin resistant action potentials in denervated skeletal muscle. Acta physiol. scand. 83, 382–388 (1971)PubMedGoogle Scholar
  51. Hartzell, H. C., Fambrough, D. M.: Acetylcholine receptors. Distribution and extrajunctional density in rat diaphragm after denervation correlated with acetylcholine sensitivity. J. gen. Physiol. 60, 248–262(1972)PubMedCentralPubMedGoogle Scholar
  52. Henderson, R., Ritchie, J. M., Strichartz, G.: The binding of labelled saxitoxin to the sodium channels in nerve membranes. J. Physiol. (Lond.) 235, 83–804 (1973)Google Scholar
  53. Henderson, R., Ritchie, J. R., Strichartz, G.: Evidence that tetrodotoxin and saxitoxin act at a metal cation binding site in the sodium channels of nerve membrane. Proc. nat. Acad. Sci. (Wash.) 71, 3936–390 (1974)PubMedCentralPubMedGoogle Scholar
  54. Henderson, R., Strichartz, G.: Ion fluxes through the sodium channels of garfish olfactory nerve membranes. J. Physiol. (Lond.) 238, 329–342 (1974)PubMedCentralPubMedGoogle Scholar
  55. Henderson, R., Wang, J. H.: Solubilization of a specific tetrodotoxin-binding component from garfish olfactory nerve membrane. Biochemistry, N. Y. 11, 4565–4569 (1972)Google Scholar
  56. Hille, B.: The common mode of action of three agents that decrease the transient charge in sodium permeability in nerves. Nature (Lond.) 210, 1220 (1966)PubMedGoogle Scholar
  57. Hille, B.: The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J. gen. Physiol. 50, 1287–1302 (1967)PubMedCentralPubMedGoogle Scholar
  58. Hille, B.: Pharmacological modifications of the sodium channels of frog nerve. J. gen. Physiol. 51, 199–219 (1968a)PubMedCentralPubMedGoogle Scholar
  59. Hille, B.: Charges and potentials at the nerve surface: divalent ions and pH. J. gen. Physiol. 51, 221–236 (1968b)PubMedCentralPubMedGoogle Scholar
  60. Hille, B.: Ionic channels in nerve membranes. Progr. Biophys. molec. Biol. 21, 1–32 (1970)Google Scholar
  61. Hille, B.: The permeability of the sodium channel to organic cations in myelinated nerve. J. gen. Physiol. 58, 599–619(1971)PubMedCentralPubMedGoogle Scholar
  62. Hille, B.: The permeability of the sodium channel to metal cations in myelinated nerve. J. gen. Physiol. 59, 637–658(1972)PubMedCentralPubMedGoogle Scholar
  63. Hille, B.: An essential ionized acid group in sodium channels. Fed. Proc. 34, 1318–1321 (1975a)PubMedGoogle Scholar
  64. Hille, B.: The receptor for tetrodotoxin and saxitoxin: a structural hypothesis. Biophys. J. 15, 615–619 (1975b)PubMedCentralPubMedGoogle Scholar
  65. Hille, B., Campbell, D. T.: An improved vaseline gap voltage clamp for skeletal muscle fibers. J. gen. Physiol. 67, 265–293 (1976)PubMedGoogle Scholar
  66. Hille, B., Ritchie, J. R., Strichartz, G.: The effect of surface charge on the nerve membrane in the action of tetrodotoxin and saxitoxin in frog myelinated nerve. J. Physiol. (Lond.) 250, 34–35P (1975)Google Scholar
  67. Hodgkin, A.L.: The conduction of the nervous impulse. Springfield, Ill.: Thomas 1964Google Scholar
  68. Hodgkin, A. L.: The optimum density of sodium channels in an unmyelinated nerve. Phil. Trans. B 270, 297–300 (1975)Google Scholar
  69. Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)PubMedCentralPubMedGoogle Scholar
  70. Hodgkin, A. L., Katz, B. K.: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108, 37–77 (1947)Google Scholar
  71. Howell, J. N., Jenden, D. J.: T-tubules of skeletal muscle: morphological alteration which interrupt excitation contraction coupling. Fed. Proc. 26, 553 (1967)Google Scholar
  72. Huxley, A. F., Stämpfli, R.: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (Lond.) 108, 315–339 (1949)PubMedCentralGoogle Scholar
  73. Ildefonse, M., Roy, G.: Kinetic properties of the sodium current in striated muscle fibres on the basis of the Hodgkin-Huxley theory. J. Physiol. (Lond.) 227, 419–431 (1972)PubMedCentralPubMedGoogle Scholar
  74. Jaimovich, E., Venosa, R. A., Shrager, P., Horowicz, P.: The density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle. J. gen. Physiol. 67, 399–416 (1976)PubMedGoogle Scholar
  75. Julian, F. J., Moore, J. W., Goldman, D. E.: Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions. J. gen. Physiol. 45, 1217–1238 (1962)PubMedCentralPubMedGoogle Scholar
  76. Kao, C. Y.: Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol. Rev. 18, 997–1049 (1966)PubMedGoogle Scholar
  77. Kao, C. Y., Fuhrman, F. A.: Differentiation of the actions of tetrodotoxin and saxitoxin. Toxicon 5, 25–34(1967)PubMedGoogle Scholar
  78. Kao, C. Y., Nishiyama: Actions of saxitoxin in peripheral neuromuscular systems. J. Physiol. (Lond.) 180, 50–66(1965)PubMedCentralPubMedGoogle Scholar
  79. Keana, J. F. W., Stämpfli, R.: Effect of several specific chemical reagents on the Na+, K+ and leakage currents in voltage-clamped single nodes of Ranvier. Biochim. biophys. Acta 373, 18–33 (1974)PubMedGoogle Scholar
  80. Keynes, R. D., Bezanilla, F., Rojas, E., Taylor, R. E.: The rate of action of tetrodotoxin on sodium conductance in the squid giant axon. Phil. Trans. B 270, 365–375 (1974)Google Scholar
  81. Keynes, R. D., Ritchie, J. M.: The movements of labelled ions in mammalian non-myelinated nerve fibres. J. Physiol. (Lond.) 179 333–367 (1965)PubMedCentralPubMedGoogle Scholar
  82. Keynes, R. D., Ritchie, J. M., Rojas, E.: The binding of tetrodotoxin to nerve membranes. J. Physiol. (Lond.) 213, 235–254 (1971)PubMedCentralPubMedGoogle Scholar
  83. Keynes, R. D., Rojas, E.: Kinetic and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J. Physiol. (Lond.) 239, 393–434 (1974)PubMedCentralPubMedGoogle Scholar
  84. Keynes, R. D., Rojas, E., Taylor, R. E.: Saxitoxin, tetrodotoxin barrier, and binding sites in squid giant axons. J. gen. Physiol. 61, 267 (1973)Google Scholar
  85. Kim, Y. H., Brown, G. B., Mosher, H. S., Fuhrman, F. A.: Tetrodotoxin: occurrence in atelopid frogs of Costa Rica. Science 189, 151–152 (1975)PubMedGoogle Scholar
  86. Kishi, Y., Fukujama, T., Aratani, M., Nakatsubo, F., Goto, T., Inoue, S., Tanino, H., Sugiura, S., Kakoi, H.: Synthetic studies on tetrodotoxin and related compounds. IV. Stereospecific total syntheses of DL-tetrodotoxin. J. Amer. chem. Soc. 94, 9219–9221 (1972)Google Scholar
  87. Kleinhaus, A. L., Pritchard, J. W.: Calcium dependent action potentials produced in leech Retzius cells by tetraethylammonium chloride. J. Physiol. (Lond.) 246, 351–361 (1975)PubMedCentralPubMedGoogle Scholar
  88. Kuriyama, H., Osa, T., Toida, H.: Effect of tetrodotoxin on smooth muscle cells of the guinea-pig taenia coli. Brit. J. Pharmacol. 27, 366–376 (1966)PubMedCentralPubMedGoogle Scholar
  89. Levinson, S. R.: The purity of tritiated tetrodotoxin as determined by bioassay. Phil. Trans. B 270, 337–348(1975)Google Scholar
  90. Levinson, S.L., Ellory, J.C.: Molecular size of the tetrodotoxin binding site estimated by irradiation inactivation. Nature [New Biol.] 245, 122–123 (1973)Google Scholar
  91. Levinson, S. R., Meves, H.: The binding of tritiated tetrodotoxin to squid giant axons. Phil. Trans. B 270, 349–352(1975)Google Scholar
  92. Marshall, M. W., Ward, M. R.: Anode break exitation in denervated rat skeletal muscle fibres. J. Physiol. (Lond.) 236, 413–420 (1974)PubMedCentralPubMedGoogle Scholar
  93. Meves, H.: Das Aktionspotential der Riesennervenzellen der Weinbergschnecke helix pomatia. Pflügers Arch. ges. Physiol. 289, R10 (1966)Google Scholar
  94. Miledi, R.: The acetylcholine sensitivity of frog muscle fibres after complete or partial denervation. J. Physiol. (Lond.) 151, 1–23 (1960)PubMedCentralPubMedGoogle Scholar
  95. Miledi, R., Potter, L.T.: Acetylcholine receptors in muscle fibres. Nature (Lond.) 233, 599–603 (1971)PubMedGoogle Scholar
  96. Miledi, R., Slater, C.R.: Electron-microscopic structure of denervated skeletal muscle. Proc. roy. Soc. B 174, 253–269 (1969)Google Scholar
  97. Mold, J. D., Bowden, J. P., Stanger, D. W., Maurer, J. E., Lynch, J. M., Wyler, R. S., Schantz, E. J., Riegel, B.: Paralytic shellfish poison VII. Evidence for the purity of the poison isolated from toxic clams and mussels. J. Amer. chem. Soc. 79, 5253–5238 (1957)Google Scholar
  98. Moore, J. W., Blaustein, M. P., Anderson, N. C., Narahashi, T.: Basis of tetrodotoxin's selectivity in blockage of squid axons. J. gen. Physiol. 50, 1401–1412 (1967a)PubMedCentralPubMedGoogle Scholar
  99. Moore, J. W., Narahashi, T., Shaw, T. I.: An upper limit to the number of sodium channels in nerve membrane J. Physiol. (Lond.) 188, 99–105 (1967b)PubMedCentralPubMedGoogle Scholar
  100. Mosher, H.S., Fuhrman, F.A., Buchwald, H.D., Fischer, H.G.: Tarichatoxin-tetrodotoxin: a potent neurotoxin. Science 144, 1100–1110 (1964)PubMedGoogle Scholar
  101. Nakamura, Y., Nakajima, S., Grundfest, H.: The action of tetrodotoxin on electrogenic components of the squid axon. J. gen. Physiol. 48, 985–986 (1965a)Google Scholar
  102. Nakamura, Y., Nakajima, S., Grundfest, H.: Analyses of spike eletrogenesis and depolarizing K inactivation in electroplaques of electrophorus electricus. J. gen. Physiol. 49, 321 (1965 b)PubMedCentralPubMedGoogle Scholar
  103. Narahashi, T., Anderson, N. C., Moore, J. W.: Tetrodotoxin does not block excitation from inside the nerve membrane. Science 153, 765–767 (1966)PubMedGoogle Scholar
  104. Narahashi, T., Moore, J. W., Frazier, D. T.: Dependence of tetrodotoxin blockage of nerve membrane conductance on external pH. J. Pharmacol. exp. Ther. 169, 224–228 (1969)PubMedGoogle Scholar
  105. Narahashi, T., Moore, J. W., Poston, R. N.: Tetrodotoxin derivatives: chemical structure and blockage of nerve membane conductances. Science 156, 976–979 (1967)PubMedGoogle Scholar
  106. Narahashi, T., Moore, J. W., Scott, W. R.: Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. gen. Physiol. 47, 965–974 (1964)PubMedCentralPubMedGoogle Scholar
  107. Noguchi, T., Hashimoto, Y.: Isolation of tetrodotoxin from a goby Gobius criniger. Toxicon 11, 305–307(1973)PubMedGoogle Scholar
  108. Nonner, W., Rojas, E., Stämpfli, R.: Gating currents in the node of Ranvier: voltage and time dependence. Phil. Trans. B 270, 483–492 (1975a)Google Scholar
  109. Nonner, W., Rojas, F., Stämpfli, R.: Displacement currents in the node of Ranvier. Pflügers Arch. ges. Physiol. 354, 1–18 (1975b)Google Scholar
  110. Ogura, Y., Mori, Y.: Mechanism of local anesthetic action of crystalline tetrodotoxin and its derivatives. Europ. J. Pharmacol. 3, 58–67 (1968)Google Scholar
  111. Ozeki, M., Freeman, A. R., Grundfest, H.: The membrane components of crustacean neuromuscular systems. 1. Immunity of different electrogenic components to tetrodotoxin and saxitoxin. J. gen. Physiol. 49, 1319–1334 (1966).PubMedCentralPubMedGoogle Scholar
  112. Quick, D. C., Waxman, S. G.: Specific staining of the axon membrane at nodes of Ranvier with ferric ion and ferrocyanide. J. neurol. Sci. (1976) in press.Google Scholar
  113. Rang, H. P.: Acetylcholine receptors. Quart. Rev. Biophys. 7, 283–399 (1975)Google Scholar
  114. Redfern, P., Thesleff, S.: Action potential generation in denervated rat skeletal muscle. I. Quantitative aspects. Acta physiol. scand. 81, 557–564 (1971a)PubMedGoogle Scholar
  115. Redfern, P., Thesleff, S.: Action potential generation in denervated rat skeletal muscle. II. The action of tetrodotoxin. Acta physiol. scand. 82, 70–78 (1971b)Google Scholar
  116. Reed, J. K., Raftery, M. A.: Properties of the tetrodotoxin binding component in plasma membranes isolated from Electrophorus electricus. Biochemistry 15, 944–953 (1976)PubMedGoogle Scholar
  117. Ritchie, I. M.: Binding of tetrodotoxin and saxitoxin to sodium channels. Phil. Trans. B 270, 319–336 (1975a)Google Scholar
  118. Ritchie, J. M.: Mechanism of action of local anaesthetic agents and biotoxins. Brit. I. Anaesth. 47, 191–198 (1975b)Google Scholar
  119. Ritchie, J. M., Rogart, R. B.: The density of sodium channels in mammalian myelinated nerve fibers and the nature of the axonal membrane under the myelin sheath. Proc. nat. Acad. Sci. (Wash.) 74, 211–215 (1977a)PubMedCentralPubMedGoogle Scholar
  120. Ritchie, J. M., Rogart, R. B.: The binding of labelled saxitoxin to normal and denervated muscle. J. Physiol. (Lond.) in press (1977b)Google Scholar
  121. Ritchie, J. M., Rogart, R. B., Strichartz, G.: Binding to nerve and muscle of saxitoxin labelled by a new method of tritium exchange. J. Physiol. (Lond.) 261, 477–494 (1976)PubMedCentralPubMedGoogle Scholar
  122. Rogart, R.B., Ritchie, J.M.: Physiological basis of conduction in myelinated nerve fibers. In: Myelin New York: Plenum Press 1977a, pp 117–159Google Scholar
  123. Rogart, R.B., Ritchie, J.M.: Pathophysiology of conduction in demyelinated nerve fibers. In: Myelin New York: Plenum Press (1977b), pp 353–382Google Scholar
  124. Rushton, W. A. H.: A theory of the effects of fibre size in medullated nerve. J. Physiol. (Lond.) 115, 101–122(1951)PubMedCentralPubMedGoogle Scholar
  125. Sastre, A., Podleski, T. R.: Pharmacologic characterization of the Na+ ionophore in L6 myotubes. Proc. nat. Acad. Sci. (Wash.) 73, 1355–1359 (1976)PubMedCentralPubMedGoogle Scholar
  126. Schantz, E. J.: Studies on shellfish poisons. Agric. Food Chem. 17, 413–416 (1969)Google Scholar
  127. Schantz, E.J.: Seafood intoxicants. In: Toxicants occurring naturally in foods. Washington, D.C.: Nat. Acad. Sci. 1973, pp 424–427Google Scholar
  128. Schantz, E. J., Ghazarossian, V. E., Schnoes, H. K., Strong, F. M., Springer, J. P., Pezzanite, J. O., Clardy, J.: The structure of saxitoxin. J. Amer. chem. Soc. 97, 1238–1239 (1975)Google Scholar
  129. Schrager, P.: Ionic conductance changes in voltage clamped crayfish axons at low pH., J. gen. Physiol., 64, 666–690 (1974)Google Scholar
  130. Schwartz, A., Lindenmayer, G. E., Allen, J. C.: The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol. Rev. 27, 1–132 (1975)Google Scholar
  131. Schwartz, J. R., Ulbricht, W., Wagner, H.-H.: The rate of action of tetrodotoxin on myelinated nerve fibres of Xenopus laeris and Rana esculenta. J. Physiol. (Lond.) 233, 167–194 (1973)Google Scholar
  132. Sevcik, C.: Binding of tetrodotoxin to squid nerve fibers. J. gen. Physiol. 68, 95–103 (1976)PubMedGoogle Scholar
  133. Shrager, P., Profera, C.: Inhibition of the receptor for tetrodotoxin in nerve membranes by various modifying carbonyl groups. Biochim. biophys. Acta 318, 141–146 (1973)PubMedGoogle Scholar
  134. Smythies, J. R., Benington, F., Morin, R. D.: Model for the action of tetrodotoxin and batrachotoxin. Nature (Lond.) 231, 188–190 (1971)PubMedGoogle Scholar
  135. Sola, O. M., Martin, W.: Denervation, hypertrophy and atrophy of the hemidiaphragm of the rat. Amer. J. Physiol. 172, 324–332 (1953)PubMedGoogle Scholar
  136. Staiman, A. L., Seeman, P.: Different sites of membrane action for tetrodotoxin and lipid-soluble anesthetics. Canad. J. Physiol. Pharmacol. 53, 513–524 (1975)Google Scholar
  137. Strichartz, G.R.: The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J. gen. Physiol. 62, 37–57 (1973)PubMedCentralPubMedGoogle Scholar
  138. Strong, P. N.: Chemical and biological studies with tetrodotoxin, tritiated tetrodotoxin and radiolabelled succinyl tetrodotoxin. Ph. D. thesis, University of Oregon 1974Google Scholar
  139. Takata, M., Moore, J. W., Kao, C. Y., Fuhrman, F. A.: Blockage of sodium conductance increase in lobster giant axon by tarichatoxin (tetrodotoxin). J. gen. Physiol. 49, 977–988 (1966)PubMedCentralPubMedGoogle Scholar
  140. Tanino, H., Nakata, T., Kaacko, T., Kishi, Y.: A stereospecific total synthesis of d,l-saxitoxin. J. Amer. chem. Soc. 98, 2878–2879 (1977)Google Scholar
  141. Tasaki, I., Takeuchi, T.: Der am Ranvierischen Knoten entstehende Aktionsstrom und seine Bedeutung für die Erregungsteigung. Pflügers Arch. ges. Physiol. 244, 696–711 (1941)Google Scholar
  142. Tasaki, I., Takeuchi, T.: Weitere Studien über den Aktionsstrom der markhaltigen Nervenfaser und über die elektrosaltatorische Übertragung des Nervenimpulses. Pflügers Arch. ges. Physiol. 245, 764–782 (1942)Google Scholar
  143. Tsien, R. Y., Green, D. P. L., Levinson, S. R., Rudy, B., Sanders, J. K. R.: A pharmacologically active derivative of tetrodotoxin. Proc. roy. Soc. B 191, 555–559 (1975)Google Scholar
  144. Tsuda, K., Ikuma, S., Kawamura, M., Tachikawa, R., Sakai, K., Tamura, C., Amakasu, O.: Tetrodotoxin VII. On the structure of tetrodotoxin and its derivatives. Chem. pharm. Bull. (Tokyo) 12, 1357–1374 (1964)PubMedGoogle Scholar
  145. Twarog, B. M., Hidaka, T., Yamaguchi, H.: Resistance to tetrodotoxin and saxitoxin in nerves of bivalve molluscs. Toxicon. 10, 273–278 (1972)PubMedGoogle Scholar
  146. Twarog, B. M., Yamaguchi, H.: Resistance to paralytic shellfish toxins in bivalve molluscs. In: Proc. First International Conference on Toxic Dinoflagellate Blooms (Lo Cicero (ed.). Wakefield: Massachusetts Science and Technology Foundation 1975, pp. 381–393.Google Scholar
  147. Ulbricht, W.: Drugs to explore the ionic channels in the axon membrane. In: Biochemistry of Sensory Functions Jaenicke (ed.). Berlin: Springer-Verlag 1974, pp. 351–366.Google Scholar
  148. Ulbricht, W., Wagner, H.-H.: The influence of pH on equilibrium effects of tetrodotoxin on myelinated nerve fibres of Rana esculenta. J. Physiol. (Lond.) 252, 159–184 (1975a)PubMedCentralPubMedGoogle Scholar
  149. Ulbricht, W., Wagner, H.-H.: The influence of pH on the rate of tetrodotoxin action on myelinated nerve fibres. J. Physiol. (Lond.) 252, 185–202 (1975b)PubMedCentralPubMedGoogle Scholar
  150. Venosa, R. A.: Inward movement of sodium ions in resting and stimulated frog's sartorius muscle. J. Physiol. (Lond.) 241, 155–173 (1974)PubMedCentralPubMedGoogle Scholar
  151. Villegas, R., Barnola, F.V., Camejo, G.: Action of proteases and phosphilipases on tetrodotoxin binding to axolemma preparations isolated from lobster nerve fibres. Biochim. biophys. Acta 318, 61–68 (1973)PubMedGoogle Scholar
  152. Villegas, J., Sevcik, C., Barnola, F.V., Villegas, R.: Grayanotoxin, veratrine, and tetrodotoxin-sensitive sodium pathways in the Schwann cell membrane of squid nerve fibers. J. gen. Physiol. 67, 369–380 (1976)PubMedGoogle Scholar
  153. Wilzbach, K.E.: Tritium labelling by exposure of organic compounds to tritium gas. J. Amer. chem. Soc. 79, 1013 (1957)Google Scholar
  154. Woodhull, A. M.: Ionic blockage of sodium channels in nerve. J. gen. Physiol. 61, 687–708 (1973)PubMedCentralPubMedGoogle Scholar
  155. Woodward, R. B.: The structure of tetrodotoxin. Pure appl. Chem. 9, 49–74 (1964)Google Scholar
  156. Yates, A. J., Bouchard, J-P., Wherrett, J. R.: Relation of axon membrane to myelin membrane in sciatic nerve during development: comparison of morphological and chemical parameters. Brain Res. 104, 261–271 (1976)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  1. 1.Department of PharmacologyYale University, School of MedicineNew HavenUSA

Personalised recommendations