On the study data structures: Binary tournaments with repeated keys

  • P. Lescanne
  • J. M. Steyaert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 154)


In this paper we develop a systematic way of analyzing tree like data structures and recursive algorithms on them; the method is shown on binary tournaments with repeated Keys extending previous applications to term trees. Tournaments are studied both as a combinatorial and as a computational object; the main line of our approach consists in showing strong correspondences between recursive definition of combinatorial parameters and of procedures on one hand and equations over generating power series on the other hand; we can then conclude by deriving closed formulae or asymtotic estimates for the average values of various quantities and running times of procedures.


Priority Queue Left Branch Closed Formula Binary Search Tree Recursive Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B 76]
    W.H. BURGE: “An analysis of binary search trees formed from sequence of nondistinct keys” J. ACM 23 [1976], 451–454.Google Scholar
  2. [BR 80]
    J. BERSTEL, C. REUTENAUR:“Recognizable formal power series on trees”, rapport LITP nℴ 80-26Google Scholar
  3. [F 79]
    Ph. FLAJOLET “Analyse d'algorithmes de manipulations d'arbres et de fichiers” Thèse Université de Paris-Orsay Septembre 1979, Also published in Cahiers du Bureau Universitaire de Recherche Opérationnelle BURO, 34–35, (1981).Google Scholar
  4. [FS 81]
    Ph. FLAJOLET, J.M. STEYAERT:“A complexity calculus for classes of recursive search programs over tree structures”, in Proc. of ACH 22nd FOCS Symp., Nashville TN (1981).Google Scholar
  5. [Fo C 69]
    D. FOATA, P. CARTIER: “Problèmes combinatoires de commutations et réarrangements”, Lecture Notes in Mathematics, 85 (1969), Springer Verlag, Berlin.Google Scholar
  6. [Fo Sc 70]
    D. FOATA, M.P. SCHUTZENBERGER: “Théorie géométrique des polynÔmes eulériens” Lecture Notes in Mathematics, 138 (1970), Springer Verlag, Berlin.Google Scholar
  7. [Fr 79]
    J. FRANÇON: “Combinatoire des structures de données”. Thèse, Université Louis Pasteur, Strasbourg 1979.Google Scholar
  8. [FVV78]
    J. FRANÇON, G. VIENNOT, J. VUILLEMIN: “Description and analysis of an efficient priority queue algorithms”, in Proc of 19th ACM Symp on FOCS (1978) pp. 1–7.Google Scholar
  9. [K 68]
    D.E. KNUTH: “The art of computer programming, vol 1: Fundamental algorithms”, addison Wesley, Reading, Mass (1968).Google Scholar
  10. [K 73]
    D.E. KNUTH: “The art of computer programming, vol. 3: Sorting and Searching”, Addison Wesley, Reading Mass (1973).Google Scholar
  11. [L82a]
    P. LESCANNE: “Analysis of data structures with non distinct Keys” Rapport CRIN 82-R-039 Centre de Recherche en Informatique de Nancy (1982).Google Scholar
  12. [L 82b]
    P. LESCANNE: “Some properties of the recursive decomposition ordering” RAIRO Informatique théorique vol. 16, nℴ 4 (1982).Google Scholar
  13. [S 77]
    R. SEDGEWICK: “Quicksort with equal Keys” SIAM J. Comput 6, (1977), 240–267.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • P. Lescanne
    • 1
  • J. M. Steyaert
    • 2
  1. 1.Campus ScientifiqueCRINVandoeuvre Les NancyFrance
  2. 2.Laboratoires de Mathématiques AppliquéesEcole PolytechniquePalaiseau CedexFrance

Personalised recommendations