Factoring multivariate integral polynomials

  • A. K. Lenstra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 154)


We present an algorithm to factor polynomials in several variables with integral coefficients that is polynomial-time in the degrees of the polynomial to be factored. Our algorithm generalizes the algorithm presented in [7] to factor integral polynomials in one variable.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.G. Cantor, Irreducible polynomials with integral coefficients haye succinct certificates, J. of Algorithms 2 (1981), 385–392.Google Scholar
  2. 2.
    M.R. Garey, D.S. Johnson, Computers and intractability, Freeman, San Francisco 1979.Google Scholar
  3. 3.
    A.O. Gel'fond. Transcendental and algebraic numbers, Dover Publ., New York 1960.Google Scholar
  4. 4.
    A.J. Goldstein, R.L. Graham, A Hadamard-type bound on the coefficients of a determinant of polynomials, SIAM Rev. 16 (1974), 394–395.Google Scholar
  5. 5.
    E. Kaltofen, On the complexity of factoring polynomials with integer coefficients, Ph.D. thesis, Rensselaer Polytechnic Institute, August 1982.Google Scholar
  6. 6.
    D.E. Knuth, The art of computer programming, vol. 2, Seminumerical algorithms, Addison Wesley, Reading, second edition 1981.Google Scholar
  7. 7.
    A.K. Lenstra, H.W. Lenstra, Jr., L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515–534.Google Scholar
  8. 8.
    A.K. Lenstra, Factoring polynomials over algebraic number fields, Report IW 213/82, Mathematisch Centrum, Amsterdam 1982 (also Proceedings Eurocal 83).Google Scholar
  9. 9.
    A.K. Lenstra, Factoring multivariate polynomials over finite fields, Report IW 221/83, Mathematisch Centrum, Amsterdam 1983 (also Proceedings 15th STOC).Google Scholar
  10. 10.
    A.K. Lenstra, to appear.Google Scholar
  11. 11.
    M. Mignotte, An inequality about factors of polynomials, Math. Comp. 28 (1974), 1153–1157Google Scholar
  12. 12.
    P.S. Wang, An improved multivariate polynomial factoring algorithm, Math. Comp. 32 (1978), 1215–1231.Google Scholar
  13. 13.
    D.Y.Y. Yun, The Hensel lemma in algebraic manipulation, MIT, Cambridge 1974; reprint: Garland publ. Co., New York 1980.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • A. K. Lenstra
    • 1
  1. 1.Mathematisch CentrumSJ AmsterdamThe Netherlands

Personalised recommendations