Advertisement

Algebraic languages and polyomnoes enumeration

  • M. P. Delest
  • G. Viennot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 154)

Abstract

The purpose of this paper is to show the use of algebraic languages theory in solving an open problem in combinatorics : give a formula for the number of convex polyominoes.

Keywords

Algebraic System Catalan Number Lattice Polygon Rational Language Algebraic Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. BENDER: Convex n-ominoes Discrete Maths, 8 (1974) 31–40.Google Scholar
  2. [2]
    BLATTNER, M. LATTEUX: Parikh-bounded languages, in Proc. 8th ICALP, Lecture Note in Computer Science nℴ115, Springer (1981) 316–323.Google Scholar
  3. [3]
    L. BOASSON: Langages algébriques, paires itérantes et transductions rationnelles, Theor. Comp. Sci. 2 (1976) 209–223.Google Scholar
  4. [4]
    R. CORI: “Un code pour les graphes planaires et ses applications”, Astérisque, Société Mathématique de France 27 (1975).Google Scholar
  5. [5]
    R. CORI, B. VAUQUELIN: Planar maps are well labeled trees, Can. Jour. Math., 33(1961) 1023–1042.Google Scholar
  6. [6]
    I. GESSEL: A noncommutative generalization and q-analog of the Lagrange inversion formula, Trans. Amer. Math. Soc., 257 (1980) 455–482.Google Scholar
  7. [7]
    J. GOLDMAN: Formal languages and enumeration. Jour. of Comb. Th., (A) 24 (1978) 318–338.Google Scholar
  8. [8]
    S. GOLOMB: “Polyominoes”, Scribner's, New-York, (1965).Google Scholar
  9. [9]
    D. KLARNER, R. RIVEST: Asymptotic bounds for the number of convex n-ominoes, Discrete Maths, 8 (1974) 31–40.Google Scholar
  10. [10]
    M. LATTEUX: Cones rationnels commutatifs, J.C.S.S., 18 (1979) 307–333.Google Scholar
  11. [11]
    W. OGDEN: A helpful result for proving inherent ambiguity, Math. Syst. The., 2 (1968) 191–194.Google Scholar
  12. [12]
    G. POLYA: On the number of certain lattice polygons, J. of Comb. Th. 6 (1969) 102–105.Google Scholar
  13. [13]
    A. SALOMAA, M. SOITTOLA: “Automa-Theoretic aspects of formal power series”, Springer Verlag, (1978).Google Scholar
  14. [14]
    W. T. TUTTE: A census of planar maps, Can. Jour. Math., 15 (1963) 249–271.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • M. P. Delest
    • 1
  • G. Viennot
    • 2
  1. 1.Université Bordeaux IIBordeaux CedexFrance
  2. 2.Université Bordeaux ITalenceFrance

Personalised recommendations