Test sets for morphisms with bounded delay

  • Christian Choffrut
  • Juhani Karhumaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 154)


Let p be a fixed nonnegative integer. We prove the Ehrenfeucht conjecture for morphisms having deciphering delay bounded by p. In other words, we show that for each language L over a finite alphabet there exists a finite subset F of L such that for arbitrary morphisms h and g having deciphering delay bounded by p, the equation h(x)=g(x) holds for all x in L if and only if it holds for all x in F.


Finite Subset Empty Word Finite Alphabet Bounded Delay Morphic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACK]
    Albert, J., Culik, K.II, Karhamäki, J., Test sets for context-free languages and algebraic systems of equations, Information and Control (to appear).Google Scholar
  2. [C]
    Culik, K. II, Homomorphisms: Decidability, Equality and Test Sets, in: R. Book, ed., Formal Language Theory, Perspectives and Open Problems (Academic Press, New York 1980).Google Scholar
  3. [CK 1]
    Culik, K. II, Karhamäki, J., On test sets for DOL Languages, RAIRO, Theoretical Informatics (to appear).Google Scholar
  4. [CK 2]
    Culik, K. II, Karhumäki, J., Systems of equations and Ehrenfeucht Conjecture, Discrete Mathematics 43 (1983) 139–153.Google Scholar
  5. [CK 3]
    Culik, K. II, Karhumäki, J., On the equality sets for homomorphisms on free monoids with two generators, RAIRO, Theoretical Informatics 14 (1980) 340–369.Google Scholar
  6. [CS 1]
    Culik, K. II, Salomaa, A., On the decidability of homomorphism equivalence on Languages, JCSS 17 (1978) 163–175.Google Scholar
  7. [CS 2]
    Culik, K. II, Salomaa, A., Test sets and checking words for homomorphism equivalence, JCSS 19 (1980) 379–395.Google Scholar
  8. [EKR 1]
    Ehrenfeucht, A., Karhumäki, J., Rozenberg, G., On binary equality languages and a solution to the test set conjecture in the binary case, J. of Algebra [to appear).Google Scholar
  9. [EKR 2]
    Ehrenfeucht, A., Karhutnäki, J., Rozenberg, G., The (generalized) Post Correspondence Problem with lists consisting of two words is decidable, Theoretical Computer Science 21 (1982), 119–144.Google Scholar
  10. [ERR]
    Ehrenfeucht, A., Rozenberg, G., Ruohonen, K., Maximal solutions of language equations involving morphisms, manuscript (1963).Google Scholar
  11. [H]
    Harrison, M., Introduction to formal language theory, (Addison-Wesley, Mass. Reading 1978).Google Scholar
  12. [HU]
    Hopcroft, J., Ullman, J., Introduction to Automata Theory, Languages and Computation, (Addison-Wesley, Mass. Reading, 1979).Google Scholar
  13. [La]
    Lallement, G., Semigroups and Combinatorial Applications (Wiley Interscience, New York, 1979).Google Scholar
  14. [Ni]
    Nivat, M., Elements de la théorie générale des Codes, in: E.R. Caianello, ed., Automata Theory (Academic Press, New York, 1966).Google Scholar
  15. [RS]
    Rozenberg, G., Salomaa, A., The Mathematical Theory of L Systems, (Academic Press, New York, 1980).Google Scholar
  16. [S]
    Salomaa, A., Jewels of Formal Language Theory, (Computer Science Press, 1981).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Christian Choffrut
    • 1
  • Juhani Karhumaki
    • 2
  1. 1.Université Paris VII U.E.R. de MathématiquesParis Cedex 05France
  2. 2.Department of MathematicsUniversity of TurkuTurku 50Finland

Personalised recommendations