Topological characterizations of infinite behaviours of transition systems

  • André Arnold
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 154)


Different kinds of infinite behaviours of different kind of transition systems are characterized by their topological properties.


Transition System Polish Space Finite Automaton Countable Union Countable Intersection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Arnold. Rational Ω-languages are non ambiguous. To appear in Theor. Comput. Sci.Google Scholar
  2. 2.
    N. Bourbaki. Topologie générale, ch. IX., Hermann, Paris (1958).Google Scholar
  3. 3.
    S. Eilenberg. Automata, languages and machines, Vol. A. Academic Press, New York (1974).Google Scholar
  4. 4.
    L.H. Landweber. Decision problems for Ω-automata. Math. System Theory 3 (1969) 376–384.Google Scholar
  5. 5.
    M. Nivat, A. Arnold. Comportements de processus. in Colloque AFCET “Les mathématiques de l'Informatique”, Paris (1982) 35–68.Google Scholar
  6. 6.
    M. Takahashi, H. Yamasaki. A note on Ω-Regular languages. Report C-44. Tokyo Institute of Technology (1982).Google Scholar
  7. 7.
    K. Wisniewski. A notion of the acceptance of infinite sequences by finite automata. Bull. Acad. Pol. Sci. Math. 27(1979) 331–332.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • André Arnold
    • 1
  1. 1.Laboratoire d'InformatiqueUniversité de Poitiers and L.I.T.P.France

Personalised recommendations