Advertisement

Computational modelling of transition metal centres

Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 82)

Abstract

Continuing rapid advances both in computer hardware and theoretical methodologies are enabling significant growth in the application of computational methods in the field of Transition Metal (TM) chemistry. This review provides a broad summary of the major types of model currently used to examine the geometries, electronic structures and reactivities of single-centre TM systems. It is aimed at inorganic chemists in general rather than at the specialist theoreticians. The typical properties one might wish to calculate and the methods available are surveyed and the computational aspects discussed emphasising the special needs of TM species. Selected applications are then reviewed to assess the level of accuracy that can presently be anticipated and to provide a pointer to those methods worthy of further investigation.

Keywords

Chem Phys Bond Energy Local Density Approximation Configuration Interaction Dalton Trans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

acac

acetylacetonate

AO

Atomic Orbital

AOM

Angular Overlap Model

ASED

Atom Superposition and Electron Delocalisation

CAS

Complete Active Space

CI

Configuration Interaction

CLF

Cellular Ligand Field

cp

Cyclopentadiene

cp*

Pentamethylcyclopentadiene

CT

Charge Transfer

DFT

Density Functional Theory

DVXα

Discrete Variational Xα

EA

Electron Affinity

ECP

Effective Core Potential

EHMO

Extended Hückel Molecular Orbital

ESR

Electron Spin Resonance

FH

Fenske-Hall

FMO

Frontier Molecular Orbital

GGA

Generalised Gradient Approximation

GVB

Generalised Valence Bond

HF

Hartree-Fock

HFS

Hartree-Fock-Slater

HOMO

Highest Occupied Molecular Orbital

INDO

Intermediate Neglect of Differential Overlap

IP

Ionisation Potential

KS

Khon-Sham

LCAO

Linear Combination of Atomic Orbitals

LDA

Local Density Approximation

LFSE

Ligand Field Theory

LUMO

Lowest Unoccupied Molecular Orbital

MCSCF

Multi Configuration Self Consistent Field

MINDO

Modified Intermediate Neglect of Differential Overlap

MM

Molecular Mechanics

MNDO

Modified Neglect of Differential Overlap

MO

Molecular Orbital

MSXα

Multi Scattering Xα

NDO

Neglect of Differential Overlap

PE

Potential Energy

PES

Photoelectron Spectroscopy

PND

Polarised Neutron Diffraction

SCF

Self Consistent Field

SWXα

Scattered Wave Xα

TM

Transition Metal

TS

Transition State

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) ‘Ab initio molecular orbital theory'. John Wiley New YorkGoogle Scholar
  2. 2.
    Veillard A (ed) (1986) ‘Quantum chemistry: The challenge of transition metals and coordination chemistry'. NATO ASI Series C, vol 176, Reidel, DordrechtGoogle Scholar
  3. 3.
    Salahub D, Zerner MC (1989) ‘The challenge of d and f electrons'. ACS Symposium Series 394, Washington D.C.Google Scholar
  4. 4.
    People JA, Head-Gordon M, Fox DJ, Paghavachari K, Curtiss LA (1989) J Chem Phys 90: 5622Google Scholar
  5. 5.
    Schaeffer HF (1985) J Phys Chem 89: 5336Google Scholar
  6. 6.
    Deeth RJ, Hitchman MA (1986) Inorg Chem 25: 1225; Bersuker IB (1984) The Jahn-Teller effect and vibronic interactions in modern chemistry. Plenum, NYGoogle Scholar
  7. 7.
    Ref l, p 446Google Scholar
  8. 8.
    See for example: Helm L, Elding Li, Merbach AE (1984) Helv Chim Acta 67: 1453 and Elmroth S, Skibsted LH, Elding LI (1989) Inorg Chem 28: 2703Google Scholar
  9. 9.
    Frost AA, Pearson RG (1961) Kinetics and Measurement, 2nd edn. Wiley, NYGoogle Scholar
  10. 10.
    Quarrie DM (1976) Statistical Mechanics, Harper and Row, NYGoogle Scholar
  11. 11.
    Muller K (1980) Angew Chem Int Engl Ed 19: 1Google Scholar
  12. 12.
    Klopman G (ed) (1974) Chemical reactivity and reaction paths, Wiley NYGoogle Scholar
  13. 13.
    Claverie P, Daudey JP, Langlet J, Pullman BP, Piazola D, Huron MJ (1978) J Phys Chem 82: 405Google Scholar
  14. 14.
    Ziegler T, Rauk A (1979) Inorg Chem 18: 1558 and ibid (1979) 18: 1755Google Scholar
  15. 15.
    Slater JC (1974) Quantum Theory of Molecules and Solids vol. 4, McGraw-Hill, NYGoogle Scholar
  16. 16.
    Morokuma K, Kitaura K (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum, NY, p 215Google Scholar
  17. 17.
    Sakaki S, Morokuma K, Ahkubo K (1985) J Am Chem Soc 107: 2686; Sakaki A, Kitaura K, Morokuma K, Ohkubo K (1983) Inorg Chem 22: 104; Sakaki S, Kitaura K, Morokuma K (1982) Inorg Chem 21: 760Google Scholar
  18. 18.
    Gerloch M, Harding JH, Woolley RG (1981) Struct Bonding 46: 1Google Scholar
  19. 19.
    Veillard A (1991) Chem Rev 91: 743Google Scholar
  20. 20.
    Spasojevic A, Quy Dao N, Strich A, Thieffry C, Benard M (1990) Inorg Chem 29: 4908Google Scholar
  21. 21.
    Chandler GS, Deeth RJ, Figgis BN, Phillips RA (1990) J Chem Soc (Dalton Trans) 1417Google Scholar
  22. 22.
    Mulliken RS (1955) J Chem Phys 23: 1833 and 1841Google Scholar
  23. 23.
    Fenske RF (1988) Pure Appl Chem 60: 1153Google Scholar
  24. 24.
    Deeth RJ, Figgis BN, Ogden MI (1988) Chem Phys 121: 115Google Scholar
  25. 25.
    Koopmans TA (1933) Physica 1: 104Google Scholar
  26. 26.
    Ballhausen CJ (1962) Introduction to Ligand Field Theory, McGraw-Hill, USAGoogle Scholar
  27. 27.
    Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  28. 28.
    Anderson K, Malmqvist PA, Roos BO (1992) J Chem Phys 96: 1218Google Scholar
  29. 29.
    Ziegler T, Rauk A, Baerends EJ (1977) Theor Chim Acta 43: 261Google Scholar
  30. 30.
    Bagus PS, Bennett BI (1975) Int J Quant Chem 9: 143Google Scholar
  31. 31.
    Szabo A, Ostlund NS (1982) Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Macmillan, USAGoogle Scholar
  32. 32.
    Born M, Oppenheimer JR (1927) Ann Physik 84: 457Google Scholar
  33. 33.
    Buijse M, Baerends EJ (1991) Theor Chim Acta 79: 389Google Scholar
  34. 34.
    MØller C, Plesset MS (1934) Phys Rev 46: 618Google Scholar
  35. 35.
    Siegbahn PEM, Almlof J, Heiberg A, Roos BO (1981) J Chem Phys 74: 2384Google Scholar
  36. 36.
    Kato S, Morokuma K (1975) Chem Phys Lett 65: 19Google Scholar
  37. 37.
    Goddard JD, Handy NC, Schaeffer HF (1979) J Chem Phys 71: 1525Google Scholar
  38. 38.
    Brooks BR, Laidig WD, Saxe P, Goddard JD, Yamaguchi Y, Schaeffer HF (1980) J Chem Phys 72: 4652Google Scholar
  39. 39.
    Krishnan R, Schlegel HB, Pople JA (1980) J Chem Phys 72: 4654Google Scholar
  40. 40.
    Hohenberg P, Kohn W (1964) Phys Rev 136: 3804Google Scholar
  41. 41.
    Kohn W, Sham LJ (1956) Phys Rev 140: A1133Google Scholar
  42. 42.
    Parr RG, Yang W (1989) Density Functional Theory of Atoms and Molecules, Oxford University Press, USAGoogle Scholar
  43. 43.
    Johnson KH (1966) J Chem Phys 45: 3085Google Scholar
  44. 44.
    Korringa J (1947) Physica 13: 392Google Scholar
  45. 45.
    Schwartz K (1972) Phys Rev B5: 2466Google Scholar
  46. 46.
    Ellis DE, Painter GS Phys Rev (1970) B2: 2887Google Scholar
  47. 47.
    ADF developed by Baerends EJ, Free University, Amsterdam, The Netherlands; DGauss available from CRAY Research, Eagan, MN, USA; DMol available from Biosym Technologies, San Diego, CA, USA; DMon developed by Salahub et al, University of Montreal, Canada; NUMOL developed by Becke at Queens University, Kingston, CanadaGoogle Scholar
  48. 48.
    Versluis L, Ziegler T (1988) J Chem Phys 88: 322Google Scholar
  49. 49.
    Becke AD (1983) Int J Quant Chem 23: 1915Google Scholar
  50. 50.
    Tschinke V, Zieglcr T (1989) Can J Chem 67: 460Google Scholar
  51. 51.
    Perdew JP (1985) Phys Rev Lett 55: 1665Google Scholar
  52. 52.
    Perdew JP (1986) Phys Rev B33: 8822 and ibid (1986) 1334: 7406 (erratum)Google Scholar
  53. 53.
    Langreth DC, Mehl RJ (1983) Phys Rev B29: 2310Google Scholar
  54. 54.
    Ziegler T (1991) Chem Rev 91: 651Google Scholar
  55. 55.
    Brobowicz FW, Goddard WA (1977) in Scaeffer, HF Modern Theoretical Chemistry vol. 3, Plenum Press, NY, p 79Google Scholar
  56. 56.
    Pople JA, Santry DP, Segal GA (1965) J Chem Phys 43: S129; Pople JA, Segal GA (1965) ibid (1965) 43: S136; Pople JA, Segal G (1966) ibid 44: 3289Google Scholar
  57. 57.
    Pople JA, Beveridge DL, Dobosh PA (1967) J Chem Phys 47: 2026; Dixon RN (1967) Mol Phys 12: 83Google Scholar
  58. 58.
    Bingham RC, Dewar MJS, Lo DH (1975) J Am Chem Soc 97: 1285Google Scholar
  59. 59.
    Anderson WP, Cundari TR, Drago RS, Zerner MC (1980) Inorg Chem 29: 1Google Scholar
  60. 60.
    Li J, Correa de Mello P, Jug K (1992) J Comp Chem 13: 85; Li J, Jug K (1992) ibid 13: 93Google Scholar
  61. 61.
    Hoffman R (1981) Science 211: 995Google Scholar
  62. 62.
    Hall MB, Fenske RF (1972) Inorg Chem 11: 768Google Scholar
  63. 63.
    Savary F, Weber J, Calzaferri GJ (1993) Phys Chem 97: 3722Google Scholar
  64. 64.
    Brubaker GR, Johnson DW (1984) Coord Chem Rev 53: 1Google Scholar
  65. 65.
    Comba P (1993) Coord Chem Rev 123: 1Google Scholar
  66. 66.
    Rodger A, Johnson BFG (1992) Inorg Chim Acta 191: 109Google Scholar
  67. 67.
    Deeth RJ, Gilbert PJ, Kemp CM (1991) J Inorg Biochem 43: 223Google Scholar
  68. 68.
    Cotton FA, Wilkinson G (1988) Advanced Inorganic Chemistry 5th ed, Wiley-Interscience, USAGoogle Scholar
  69. 69.
    Hancock RD (1989) Prog Inorg Chem 37: 187Google Scholar
  70. 70.
    Gerloch M (1983) Magnetism and Ligand Field Analysis, Cambridge University Press, NYGoogle Scholar
  71. 71.
    Brown CA, Gerloch M, McMeeking RF (1988) Mol Phys 64: 771 and Duer MJ, Gerloch M (1989) Inorg Chem 28: 4260 and Duer MJ, Gerloch M (1989) J Chem Soc (Dalton Trans) 2109Google Scholar
  72. 72.
    Boca R, Pelikan P (1992) Coord Chem Rev 118: 1Google Scholar
  73. 73.
    Tsipis CA (1991) Coord Chem Rev 108: 163Google Scholar
  74. 74.
    Duer MJ, Fenton ND, Gerloch M (1990) Int Rev Phys Chem 9: 227Google Scholar
  75. 75.
    Spasojevic A, Quy Dao N, Strich A, Lieffry CT, Benard M (1980) Inorg Chem 29: 4900Google Scholar
  76. 76.
    Luthe HP, Siegbahn PEM, Almlof J (1985) J Phys Chem 89: 2156Google Scholar
  77. 77.
    Dobbs KD, Hehre WJ (1987) J Comput Chem 8: 861Google Scholar
  78. 78.
    Caisky P, A Dedieu (1986) Chem Phys 103: 265Google Scholar
  79. 79.
    Blomberg MRA, Brandenmark VBB, Siegbahn PEM, Mathisen KB, Karlstrom G (1985) J Phys Chem 89: 2171Google Scholar
  80. 80.
    Rohlfing CM, PJ Hay (1985) J Chem Phys 83: 4641Google Scholar
  81. 81.
    Bauschlicher CW, Langhoff SR, Barnes LA (1989) Chem Phys 129: 431Google Scholar
  82. 82.
    Rosch N, Jorg H, Dunlap BI (1985) NATO ASI 176: 179Google Scholar
  83. 83.
    Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) J Phys Chem 96: 6630Google Scholar
  84. 84.
    Westbrook JD, Krogh-Jespersen K (1988) Int J Quant Chem Symp 22: 243Google Scholar
  85. 85.
    Daniel C, Koga N, Han J, Fu XY, Morokuma (1988) J Am Chem Soc 110: 3773Google Scholar
  86. 86.
    Maseras F, Lledos A, Duran M, Bertran J (1992) J Chem Soc (Faraday Trans) 88: 1111Google Scholar
  87. 87.
    Deeth RJ (1993) J Chem Soc (Dalton Trans) 3711Google Scholar
  88. 88.
    Blyholden G, Springs J (1985) Inorg Chem 24: 244Google Scholar
  89. 89.
    Ditchfield R, Hughes RP, Tucker DS, Bierwagen EP, Robbins J, Robinson DJ, Zakutansky JA (1993) Organomet 12: 2258Google Scholar
  90. 90.
    Allured VS, Kelly CM, Landis BCR (1991) J Am Chem Soc 113: 4Google Scholar
  91. 91.
    Kozelka K, Savinelli R, Berthier G, Flament J-P, Lavery R (1993) J Comp Chem 14: 45Google Scholar
  92. 92.
    Choi MG, Brown TL (1993) Inorg Chem 32: 5603Google Scholar
  93. 93.
    Deeth RJ (1993) J Phys Chem 97: 11625Google Scholar
  94. 94.
    Deeth RJ (1993) J Chem Soc (Dalton Trans) 1061Google Scholar
  95. 95.
    Rappe AK, Goddard WA (1982) J Am Chem Soc 104: 448; ibid (1982) 104: 3287Google Scholar
  96. 96.
    Ziegler T, Tschinke V, Becke A (1987) Polyhedron 6: 685Google Scholar
  97. 97.
    Ziegler T (1985) J Am Chem Soc 107: 4453Google Scholar
  98. 98.
    Bickelhaupt FM, Baerends EJ, Ravenek W (1990) Inorg Chem 29: 350Google Scholar
  99. 99.
    Ziegler T (1985) Inorg Chem 24: 1547Google Scholar
  100. 100.
    Ziegler T (1986) Inorg Chem 25: 2723Google Scholar
  101. 101.
    Ziegler T (1985) Organometallics 4: 675Google Scholar
  102. 102.
    Ziegler T, Tschinke V, Ursenbach C (1987) J Am Chem Soc 109: 4825Google Scholar
  103. 103.
    Ref 2, p 351Google Scholar
  104. 104.
    Hay PS (1987) J Am Chem Soc 109: 705Google Scholar
  105. 105.
    Upton TH, Rappe AK (1985) J Am Chem Soc 107: 1206Google Scholar
  106. 106.
    Ziegler T, Tschinke V, Fan L, Becke AD (1989) J Am Chem Soc 111: 9177Google Scholar
  107. 107.
    Masters AP, Sorensen TS, Ziegler T (1989) Organomet 8: 1088Google Scholar
  108. 108.
    Versluis L, Ziegler T, Baerends EJ, Ravenek W (1989) J Am Chem Soc 111: 2018Google Scholar
  109. 109.
    Folga E, Ziegler T (1993) Organomet 12: 325Google Scholar
  110. 110.
    Woo T, Folga E, Zielger T (1993) Oranomet 12: 1289Google Scholar
  111. 111.
    Lyne PD, Mingos DMP, Ziegler T, Downs AJ (1993) Inorg Chem 32: 4785Google Scholar
  112. 112.
    Benyunes SA, Deeth RJ, Fries A, Green M, McPartlin M, Nation CBM (1992) J Chem Soc (Dalton Trans) 3453Google Scholar
  113. 113.
    Bencini A, Getteschi D (1993) J Am Chem Soc 105: 5535Google Scholar
  114. 114.
    Gewirth AA, Soloman EI (1988) J Am Chem Soc 110: 3811Google Scholar
  115. 115.
    Deeth RJ (1990) J Chem Soc (Dalton Trans) 355Google Scholar
  116. 116.
    Deeth RJ (1991) J Chem Soc (Dalton Trans) 1467Google Scholar
  117. 117.
    Deeth RJ (1991) J Chem Soc (Dalton Trans) 1895Google Scholar
  118. 118.
    Deeth RJ (1990) J Chem Soc (Dalton Trans) 365Google Scholar
  119. 119.
    Garner CD, Kendrick J, Lambert P, Mabbs FE, Hillier IH (1976) Inorg Chem 15: 1287Google Scholar
  120. 120.
    Collison DA (1989) J Chem Soc (Dalton Trans) 1Google Scholar
  121. 121.
    Adachi H, Shiokawa S, Tsukada M, Satoko C, Sugano S (1979) J Phys Soc Jap 47: 1528Google Scholar
  122. 122.
    Deeth RJ (1993) J Chem Soc (Faraday Trans) 89: 3745Google Scholar
  123. 123.
    Ref 2, p 199Google Scholar
  124. 124.
    Pierloot K, Van Prast E, Vanquickenborne IG, Roos BO (1993) J Phys Chem 97: 12220Google Scholar
  125. 125.
    Vanquickenborne LG, Hendrickx M, Postelmans D, Hyla-Kryspin I, Pierloot K (1988) Inorg Chem 27: 900Google Scholar
  126. 126.
    Vanquickenborne LG, Hendrickx M, Hyla-Kryspin I (1989) Inorg Chem 28: 770Google Scholar
  127. 127.
    Ciliberto E, Di Bella S, Fragala I, Granozzi G, Burton NA, Hillier IH, Kendrick J, Guest MF (1990) J Chem Soc (Dalton Trans) 849Google Scholar
  128. 128.
    Casarin M, Ciliberto E, Gulino A, Fragala I (1989) Organomet 8: 900Google Scholar
  129. 129.
    Gleiten R, Hyla-Kryspin I, Ziegler ML, Sergeson G, Green JC, Stahl L, Ernst RD (1989) Organomet 8: 298Google Scholar
  130. 130.
    Yang DS, Bancroft GM, Puddephatt RJ, Bursten BE, McKee SD (1989) Inorg Chem 28: 872Google Scholar
  131. 131.
    Wilson S (ed) (1987) Methods in Computational Chemistry vol 1, Plenum, NY and (1988) vol 2.Google Scholar
  132. 132.
    Schneider WF, Strittmatten RJ, Bursten BE, Ellis DE in Labanowski ... pp 247Google Scholar
  133. 133.
    Hay PJ, Wadt WR (1985) J Chem Phys 82: 270Google Scholar
  134. 134.
    Ziegler T, Tschinke, Baerends EJ, Snijders JG, Ravenek W (1989) J Phys Chem 93: 3050Google Scholar
  135. 135.
    Bursten BE, Casarin M, Ellis DE, Fragala I, Marks TJ (1986) Inorg Chem: 25 12574Google Scholar
  136. 136.
    Duckett SB, Newell CL, Eisenberg R (1994) Abs. Amer. Chem. Soc 205: 200Google Scholar
  137. 137.
    Akesson R, Pettersson LGM, Sandstrom M, Siegbahn PEM, Wahlgren U (1993) J Phys Chem 97: 3765Google Scholar
  138. 138.
    van Eldik R (1986) In: van Eldik R (ed.) Inorganic High Pressure Chemistry, Kinetics and Mechanisms. Elsevier, Amsterdam, Ch. 1 and 8Google Scholar
  139. 139.
    van Eldik R, Cohen H, Meyerstein D (1994) Inorg Chem 33: 1566Google Scholar
  140. 140.
    Rappe AK, Colwell KS, Casewit CJ (1993) Inorg Chem 32: 3438Google Scholar
  141. 141.
    Daul C, Baerends EJ, Vernooijs P (1994) Inorg Chem 33: 3538Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  1. 1.Inorganic Computational Chemistry Group, School of ChemistryUniversity of BathBathUK

Personalised recommendations