Skip to main content

Progress in polymetallic exchange-coupled systems; some examples in inorganic chemistry

  • Chapter
  • First Online:
Complexes, Clusters and Crystal Chemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 79))

Abstract

The aim of this paper is to review some basic concepts needed for describing polymetallic exchange-coupled systems and to treat problems of current interest in inorganic chemistry.

First, a brief survey of a priori conflicting descriptions of the exchange mechanisms is proposed. The overlap between the Heisenberg and Anderson models is demonstrated in the limiting case of highly distorted systems, in which the orbital degeneracy of interacting ions is removed. Then, the correlations between magnetic properties and structural features are discussed for some series of compounds characterized by specific arrangements of the metal ions such as dimers, trimers ... The sign and magnitude of the exchange parameters are shown to depend on different factors such as the ground-state of the interacting ions, the geometry of the species, and the nature of the bridging ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Willett RD, Gatteschi D, Kahn O (1985) Magneto structural correlations in exchange coupled systems, NATO ASI Series, vol 140, Reidel, Dordrecht

    Google Scholar 

  2. See for instance Sinn E (1970) Coord Chem Rev 5:313

    Google Scholar 

  3. Darriet J, Dance JM, Tressaud A (1984) J Sol State Chem 54:29

    Google Scholar 

  4. Longo JM and Kafalas JA (1968) Mat Res Bull 3:687

    Google Scholar 

  5. Crawford WH, Richardson HW, Wasson JR, Hogson DJ, Hatfield WE (1976) Inorg Chem 15:2107

    Google Scholar 

  6. Bertrand JA, Ginsberg AP, Kirkwood RI, Martin RL, Sherwood RC (1971) Inorg Chem 10:240

    Google Scholar 

  7. Bonner JC, Kobayashi H, Tsujikawa I, Nakamura Y, Friedberg SA (1975) J Chem Phys 63:19

    Google Scholar 

  8. Drillon M, Darriet J, Georges R (1977) J Phys Chem Sol 38:411

    Google Scholar 

  9. Darriet J, Lozano L, Tressaud A (1979) Sol State Comm 32:493

    Google Scholar 

  10. Chariot MF, Kahn O, Drillon M (1982) Chem Phys 70:177

    Google Scholar 

  11. Leuenberger B, Briat B, Canit JC, Furrer A, Fischer P, Güdel HU (1986) Inorg Chem 25:2930

    Google Scholar 

  12. Julve M, Verdaguer M, Kahn O, Gleizes A, Philoche-Levisalles M (1983) Inorg Chem 22:368

    Google Scholar 

  13. Hodgson DJ, see Ref. [1](, p 497

    Google Scholar 

  14. Kahn O, Galy J, Journaux Y, Jaud J, Morgenstern-Badarau I (1982) J Am Chem Soc 104:2165

    Google Scholar 

  15. Goodenough JB (1958) J Phys Chem Solids 6:287

    Google Scholar 

  16. Kanamori JJ (1959) J Phys Chem Solids 10:87

    Google Scholar 

  17. Forster LS, Ballhausen CJ (1962) Acta Chem Scand 16:1385

    Google Scholar 

  18. Ginsberg AP (1971) Inorg Chim Acta Rev 5:45

    Google Scholar 

  19. Van Kalkeren G, Schmidt WW, Block R (1979) Physica 97B:315

    Google Scholar 

  20. Drillon M (1977) Sol State Comm 21:425

    Google Scholar 

  21. Dzialoshinski I (1958) Phys Chem Solids 4:241

    Google Scholar 

  22. Stevens KWH (1976) Phys. Rep. 24:1

    Google Scholar 

  23. Dance IG (1973) Inorg Chem 12:2743

    Google Scholar 

  24. Hay PJ, Thibeault JC, Hoffmann R (1975) J Am Chem Soc 97:4884

    Google Scholar 

  25. Kahn O, Briat B (1976) J Chem Soc Faraday II 72:268

    Google Scholar 

  26. Anderson PW (1959) Phys Rev 115:2

    Google Scholar 

  27. Elliot RJ, Thorpe MF (1968) J Appl Phys 39:802

    Google Scholar 

  28. Wolf WP (1971) J Phys C32:26

    Google Scholar 

  29. Levy P (1969) Phys Rev 177:509

    Google Scholar 

  30. Drillon M, Georges R (1981) Phys Rev B24:1278

    Google Scholar 

  31. Drillon M, Georges R (1982) Phys Rev B26:3882

    Google Scholar 

  32. Leuenberger B, Gudel HU (1984) Mol Phys 51:1

    Google Scholar 

  33. De Loth P, Cassoux P, Daudey JP, Malrieu JP (1981) J Am Chem Soc 103:4007

    Google Scholar 

  34. Torrance JB, Oostra S, Nazzal A (1987) Synt Met 19:708

    Google Scholar 

  35. Katz L, Ward R (1964) Inorg Chem 3:205

    Google Scholar 

  36. International Tables for X Ray Crystallography (1959) vol II, p 342, Kynoch Press, Birmingham

    Google Scholar 

  37. Dance JM, Kerkouri N, Tressaud A (1979) Mat Res Bull 14:869

    Google Scholar 

  38. Dance JM, Kerkouri N, Soubeyroux JL, Darriet J, Tressaud A (1982) Mat Letters 1:49

    Google Scholar 

  39. Dance JM, Darriet J, Tressaud A, Hagenmuller P (1984) Z Anorg Allg Chem 508:93

    Google Scholar 

  40. Pickart SJ, Alperin HA (1968) J Appl Phys 39:1332; (1971) 42:1617

    Google Scholar 

  41. Gudel HU, Hauser U, Furrer A (1979) Inorg Chem 18:2730

    Google Scholar 

  42. Gudel HU, Furrer A (1977) Phys Rev Lett 39:657

    Google Scholar 

  43. Ferguson J, Gudel HU, Poza H (1973) Austr J Chem 26:513

    Google Scholar 

  44. Pausewang G, (1971) Z Anorg Allg Chem 381:189

    Google Scholar 

  45. Walterson K (1978) Crystal Struct Comm 7:507

    Google Scholar 

  46. Leuenberger B, Briat B, Canit JC, Furrer A, Fischer P, Gudel H (1986) Inorg Chem 25:2930

    Google Scholar 

  47. Meyer G, Schonemud A (1980) Mat Res Bull 15:89

    Google Scholar 

  48. Darriet J, Bonjour E, Beltran D, Drillon M (1984) J Magn Magn Mat 44:287

    Google Scholar 

  49. Dance JM, Mur J, Darriet J, Hagenmuller P, Massa W, Kummer S, Babel D (1986) J Sol State Chem 63:446

    Google Scholar 

  50. Darriet J, Georges R (1982) C.R. Acad Sc 295:347

    Google Scholar 

  51. Briat B, Kahn O, Morgenstern Badarau I, Rivoal JC (1981) Inorg Chem 20:4183

    Google Scholar 

  52. Callaghan A, Moeller CW, Ward R (1966) Inorg Chem 5:1572

    Google Scholar 

  53. Darriet J, Drillon M, Villeneuve G, Hagenmuller P (1976) J Sol State Chem 19:213

    Google Scholar 

  54. Drillon M (1977) Sol State Comm 21:425

    Google Scholar 

  55. Darriet J, Soubeyroux JL, Murani AP (1983) J Phys Chem Solids 44:269 (1983) J Magn Magn Mat 31:605

    Google Scholar 

  56. Denohue PC, Katz L, Ward R (1965) Inorg Chem 4:306

    Google Scholar 

  57. Drillon M, Darriet J, Hagenmuller P, Georges R (1980) J Phys Chem Solids 41:507

    Google Scholar 

  58. Gibb TC, Greatrex R, Greenwood NN, Kaspi P (1973) J Chem Soc Trans 1253

    Google Scholar 

  59. Drillon M, Darriet J, Georges R (1977) J Phys Chem Solids 38:411

    Google Scholar 

  60. Greatrex R, Greenwood NN (1980) J Sol State Chem 31:281

    Google Scholar 

  61. Bayer G (1960) J Am Ceram Soc 43:495

    Google Scholar 

  62. Drillon M, Padel L, Bernier JC (1979) Physica 97B:380 (1980) J Magn Magn Mat 15:317

    Google Scholar 

  63. Montmory MC, Newnham R (1968) Sol State Comm 6:323

    Google Scholar 

  64. Kahn O, Briat B, Galy J (1977) J Chem Soc Faraday II, 1453

    Google Scholar 

  65. Shrivastava KN, Jaccarino V (1976) Phys Rev B13:299

    Google Scholar 

  66. Drillon M, Padel L, Bernier JC (1980) Physica 100B:343

    Google Scholar 

  67. Pourroy G, Drillon M, Padel L, Bernier JC (1983) Physica 123B:21

    Google Scholar 

  68. Pourroy G, Drillon M (1983) Physica 123B:16

    Google Scholar 

  69. Mumme WG, Watts JA (1971) J Sol State Chem 3:319

    Google Scholar 

  70. Waltersson K, Forslund B (1977) Acta Cyst B33:789

    Google Scholar 

  71. Johnston DC, Johnston JW, Goshorn DP, Jacobson AJ (1987) Phys Rev B35:219

    Google Scholar 

  72. Shoemaker GL, Anderson JB, Kostiner E (1977) Acta Cryst B33:2569

    Google Scholar 

  73. Delhaes P, Drillon M (eds) (1987) Organic and inorganic low dimensional crystalline materials, NATO ASI Series, vol 168, Plenum, New York-London, p 421

    Google Scholar 

  74. Boukhari A, Moqine A, Flandrois S (1986) Mat Res Bull 21:395

    Google Scholar 

  75. Holloway JH, Peacock RD, Small RWH (1964) J Chem Soc 644

    Google Scholar 

  76. Mitchell SJ, Holloway JH (1971) J Chem Soc A 2789

    Google Scholar 

  77. Norell BK, Zalkin A, Tressaud A, Bartlett N (1973) Inorg. Chem 12:2640

    Google Scholar 

  78. Holloway JH, Rao PR, Bartlett N (1965) Chem Comm 393

    Google Scholar 

  79. Bartlett N, Rao PR (1965) Chem Comm 252

    Google Scholar 

  80. Bartlett N, Lohmann DH (1964) J Chem Soc 619

    Google Scholar 

  81. Darriet J, Soubeyroux JL, Touhara H, Tressaud A, Hagenmuller P (1982) Mat Res Bull 17:315

    Google Scholar 

  82. Drillon M, Darriet J, Georges R (1977) J Phys Chem Solids 38:411

    Google Scholar 

  83. Darriet J, Xu Q, Tressaud A, Hagenmuller P (1986) Mat Res Bull 21:1351

    Google Scholar 

  84. Pei Y, Journaux Y, Kahn O, Dei A, Gatteschi D (1986) J Chem Soc Chem Comm 1300

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Drillon, M., Darriet, J. (1992). Progress in polymetallic exchange-coupled systems; some examples in inorganic chemistry. In: Complexes, Clusters and Crystal Chemistry. Structure and Bonding, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036500

Download citation

  • DOI: https://doi.org/10.1007/BFb0036500

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55095-2

  • Online ISBN: 978-3-540-46694-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics