Optimization of low-order compensators for infinite-dimensional systems

  • T. L. Johnson
Optimal Control: Partial Differential Equations
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 22)


Algebraic Riccati Equation Nonlinear Algebraic System Optimal Compensator Accurate System Model Scale Wiener Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VI. References

  1. [1]
    Bensoussan, A., Filtrage optimal des systems lineaires, Dunod, 1971.Google Scholar
  2. [2]
    Curtain, R.F. and Pritchard, A.J., Infinite-Dimensional Linear Systems Theory, Springer-Verlag Lecture Notes in Control and Information Sciences (ed., A.V. Balakrishnan and M. Thoma)., 1978.Google Scholar
  3. [3]
    Russell, D.L., “Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions”, SIAM Review, Vol. 20, pp. 639–739, Oct. 1978.Google Scholar
  4. [4]
    Linquist, A., “On feedback control of linear stochastic systems”, SIAM J. Control, Vol. 11, pp. 323–343, May 1973.Google Scholar
  5. [5]
    Platzman, L.K. and T.L. Johnson, “A Linear-Quadratic-Gaussian Control Problem with Innovations-Feedthrough Solution”, IEEE Trans. Auto. Control, Vol. AC-21, No. 5, pp. 721–725, Oct. 1976.Google Scholar
  6. [6]
    Blanvillain, P.J. and T.L. Johnson, “Specific-optimal Control with a dual minimal-order observer-based compensator”, Int. J. Control, Vol. 28, No. 2, pp. 277–294 (1978).Google Scholar
  7. [7]
    Blanvillain, P.J. and T.L. Johnson, “Invariants of Optimal minimal-order observer-based compensators”, IEEE Trans. Auto. Contr., Vol. 23, pp. 473–474, June 1978.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • T. L. Johnson
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations