Advertisement

A free boundary problem in hydrodynamic lubrication governed by the stokes equations

  • C. Cuvelier
Optimal Control: Partial Differential Equations
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 22)

Keywords

Free Boundary Free Boundary Problem Journal Bearing Reynolds Equation Stokes Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    G. BIRKHOFF Free boundary problems for viscous flows in channels. In ‘Cavitation in real liquids’ (ed. R. Davies), New York, Elsevier, 1964, p. 102–121.Google Scholar
  2. [1]
    A. CAMERON Principles of lubrication. London, Longmans, 1966.Google Scholar
  3. [1]
    J.C. COYNE, H.G. ELROD Conditions for the rupture of a lubricating film I. J. of Lubrication Technology 92, 1970, p. 451–456.Google Scholar
  4. [1a]
    C. CUVELIER [1]: A free boundary problem governed by the Stokes equations. To appear.Google Scholar
  5. [1]
    B. FANTINO, J. FRENE, M. GODET Conditions d'utilisation de l'équation de Reynolds on mécanique des films minces visqueux. C.R.A.S. 272, 1971, p. 691–693.Google Scholar
  6. [1]
    J.L. LIONS Equations différentielles opérationelles et problèmes aux limites. Collection Jaune. Berlin, Springer, 1961.Google Scholar
  7. [2]
    Sur le contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Paris, Dunod, 1968.Google Scholar
  8. [1]
    O. PINKUS, B. STERNLIGHT Theory of hydrodynamic lubrication. New-York, Mc Graw-Hill, 1961.Google Scholar
  9. [1]
    O. PIRONNEAU Sur les problèmes d'optimisation de structure en mécanique des fluides. Thèse de doctorat, Paris VI, 1976.Google Scholar
  10. [1]
    R. TEMAM Navier-Stokes equations. Amsterdam, North-Holland. 1977.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • C. Cuvelier
    • 1
  1. 1.Mathematical DepartmentDelft University of TechnologyDelftThe Netherlands

Personalised recommendations