Optimal control of eigenvalues — I

  • Eduardo Brietzke
  • Pedro Nowosad
Optimal Control: Partial Differential Equations
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 22)


Banach Space Global Maximum Radon Measure Borel Function Nonlinear Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    AMANN, H., Nonlinear elliptic equations with nonlinear boundary conditions, Proc. 2nd Scheveningen Conf. on Diff. Eq., ed. W. Eckhaus, North Holland, Amsterdam, 1976.Google Scholar
  2. [2]
    FRIEDLAND, S., Extremal eigenvalue problems defined for certain functions, J. Ratl. Mech. and Anal., 67 (1977), 73–81.Google Scholar
  3. [3]
    FRIEDLAND, S., Extremal eigenvalue problems, Bol. Soc. Bras. Mat. vol. 9, (1978), 13–40.Google Scholar
  4. [4]
    GOERTZEL, G., Minimum critical mass and flat flux, J. Nuclear Energy (now Reactor Science and Techn.) 2 (1956), 193–201.Google Scholar
  5. [5]
    KARLIN, S., Some extremal problems for eigenvalues of certain matrix and integral operators, Adv. in Math. 9 (1972), 93–136.Google Scholar
  6. [6]
    KRASNOSELSKII, M.A., Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.Google Scholar
  7. [7]
    NOWOSAD, P., Isoperimetric eigenvalue problems in algebras, Comm. Pure Appl. Math. 21 (1968), 401–465.Google Scholar
  8. [8]
    WEINBERG, A.M., and WIGNER, E.P., The Physical Theory of Nuclear Chain Reactors, Univ. Chicago Press, Chicago, 1958.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Eduardo Brietzke
    • 1
    • 2
  • Pedro Nowosad
    • 1
    • 2
  1. 1.Instituto de Matemática Pura e Aplicada (IMPA)Rio de JaneiroBrazil
  2. 2.Instituto de MatemáticaUniv. Fed. do Rio Grande do SulBrazil

Personalised recommendations