On sensitivity minimization for linear control system

  • Andrzej W. Olbrot
  • Andrzej Sikora
Optimal Control: Ordinary And Delay Differential Equations
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 22)


A linear control system
is considered.
$$x(t){\mathbf{ }} \in {\mathbf{ }}R^n {\mathbf{ }}u(t){\mathbf{ }} \in {\mathbf{ }}R^m {\mathbf{ }}y(t){\mathbf{ }} \in {\mathbf{ }}R^p {\mathbf{ }}r{\mathbf{ }} \in \Omega \subset {\mathbf{ }}R^q$$
The goal is to find a feedback
$$x(t){\mathbf{ }} \in {\mathbf{ }}R^n {\mathbf{ }}u(t){\mathbf{ }} \in {\mathbf{ }}R^m {\mathbf{ }}y(t){\mathbf{ }} \in {\mathbf{ }}R^p {\mathbf{ }}r{\mathbf{ }} \in \Omega \subset {\mathbf{ }}R^q$$
such that appropriately defined sensitivity of system
is minimal. A theorem on the existence of least sensitive feedback is presented and computational algorithms are considered.


Feedback Controller Uncertain Parameter Stability Margin Pole Placement Minimax Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. [1]
    Sirisena, M.R. and Choi, S.S., “Pole Placement in Output Feedback Control Systems for Minimum Sensitivity to Plant Parameter Variations”, Int. J. Control., 1975, vol. 22, No 1, 129–140.Google Scholar
  2. [2]
    Hadass, Z., Powell, J.D., “Design Method for Minimizing Sensitivity to Plant Parameter Variation”, AIAA J., vol. 13, October 1975, pp. 1295–1303.Google Scholar
  3. [3]
    Ly, U.L., Cannon, R.H., Jr., “A Direct Method for Designing Robust Optimal Control Systems,” Proc. AIAA Guidance and Control Conference, Palo Alto, CA, August 1978, pp. 440–448.Google Scholar
  4. [4]
    Heath, R.E., Dillow, J.D., “Incomplete Feedback Control-Linear Systems with Random Parametes”, Proc. IEEE Conf. on Decision and Control, Phoenix, A2, Nov, 1979, pp 220–224.Google Scholar
  5. [5]
    Chang, S.S.L., Peng, T.K.C., “Adaptive Guaranted Cost Control of Systems With Uncertain Parametes”, IEEE Trans. Aut. Contr., AC-17, Aug. 1972, 471–483.Google Scholar
  6. [6]
    Vinkler, A., Wood, L.J., “Multistep Guaranted Cost Control of Linear Systems with Uncertain Parameter”, Accepted for publ. in Journal of Guidance and Control.Google Scholar
  7. [7]
    Demianov, W.F., Maloziemov, W.N. “Introduction to minimax”, Izd. Nauka, Moscov 1972, (in Russian)Google Scholar
  8. [8]
    Anciferov, E.G. “Some optimization problems connected with the design of linear stable dynamical systems”, Prikl. Mathematica, Izd. Nauka, Sibirskoe Otdelenye, Novosybirsk, 1978 (in Russian).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Andrzej W. Olbrot
    • 1
  • Andrzej Sikora
    • 1
  1. 1.Politechnika WarszawskaInstytut AutomatykiWarszawa

Personalised recommendations