On the existence of the minimum asynchronous automaton and on decision problems for unambiguous regular trace languages

  • D. Bruschi
  • G. Pighizzini
  • N. Sabadini
Contributed Papers Trace Languages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 294)


In this paper we characterize concurrent alphabets for which every recognizable trace language admits a minimum finite state asynchronous automaton. Furthermore, we consider the equivalence problem for unambiguous regular trace languages, and prove that in some cases it is decidable even if the concurrency relation is not transitive.


Regular Expression Maximal Clique Equivalence Problem Regular Language Concurrent System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    A.Arnold, Le théorème de Zielonka, manuscript, 1986Google Scholar
  2. [AH]
    IJ.J.Aalbersberg, H.J.Hogeboom, Decision problems for regular trace languages, Proc. 14th ICALP, Lect. Not. Comp. Sci.267, pp.251–259, Springer, 1987Google Scholar
  3. [AW]
    IJ.J. Aalbersberg, E. Welzel, Trace languages defined by regular string languages, RAIRO Int. Théor. et Apl., 20, pp.103–119, 1986Google Scholar
  4. [AR]
    IJ.J. Aalbersberg, G. Rozenberg, Theory of traces, Institute of Applied Mathematics and Computer Science, Univerisity of Leiden, Tec.Rep no 86-16, 1986Google Scholar
  5. [BS]
    J. Berstel, J. Sakarovitch, Recent results in the theory of rational sets, Proc.MFCS 86, Lect. Not.Comp.Sci. 233, pp.15–28, 1986Google Scholar
  6. [BBMS]
    A. Bertoni, M. Brambilla, G. Mauri, N. Sabadini, An application of the theory of free partially commutative monoids: asymptotic densities of trace languages, Proc. 10th Symp. MFCS, Lect. Not. Comp. Sci. 118, pp. 205–215, Springer, 1981Google Scholar
  7. [BMS1]
    A.Bertoni, G.Mauri, N.Sabadini, A hierarchy of regular trace languages and some combinatorial applications, Proc. II World Conf. on Math. at the Service of Men, Las Palmas, pp. 146–153, 1982Google Scholar
  8. [BMS2]
    A. Bertoni, G. Mauri, N. Sabadini, Equivalence and membership problems for regular trace languages, Lect. Not. Comp. Sci. 140, pp. 61–71, 1982Google Scholar
  9. [BMS3]
    A. Bertoni, G. Mauri, N. Sabadini, Unambiguous regular trace languages “Algebra, Comb. and Logic in Computer Science”, Colloquia Math. Soc.J.Bolyai, vbol.42,pp.113–123, North Holland, Amsterdam, 1985Google Scholar
  10. [BMS4]
    A. Bertoni, G. Mauri, N. Sabadini, Concurrency and commutativity, Workshop on Petri Nets, Varenna, 1982Google Scholar
  11. [BS]
    A. Bertoni, N. Sabadini, Generating functions of trace languages, Int.Rep. Dip. Comp. Sci., Milano, 1986Google Scholar
  12. [CM]
    R. Cori, Y. Métivier, Approximation d'une trace, automates asynchrones et ordre des evenements dans les systems repartis, Université de Bordeaux I, no 1-8708, 1987Google Scholar
  13. [CP]
    R. Cori, D. Perrin, Automates et commutations partielles, RAIRO Inf.Théor. 19, pp.21–32, 1985Google Scholar
  14. [Du]
    C. Duboc, Commutations dans les monoídes libres: une cadre theorique pour l'étude du parallélisme; These du Doctorat, Université of Rouen, 1986Google Scholar
  15. [GTW]
    J.A. Goguen, J.W. Thatcher, F.C. Wagner, An initial algebra approach to the specification, correctness and implementation of abstract data types, IBM Res. Rep RC6487, Yorktown Heights, 1976.Google Scholar
  16. [K]
    E.V. Krishnamurthy, Error-free polynomial matrix computations, Springer-Verlag New York, Berlin, Heidelberg, Tokio, 1985.Google Scholar
  17. [La]
    G. Lallement, Semigroups and combinatorial applications, Wiley and Sons Ed., New York, 1979Google Scholar
  18. [Ma1]
    A. Mazurkiewicz, Concurrent program schemes and their interpretations, DAIMI Rep. PB-78, Aarhus University, 1977Google Scholar
  19. [Ma2]
    A. Mazurkiewicz, Semantics of concurrent systems: a modular fixed point trace approach, Lect. Not. Comp. Sci. 118, pp.353–375, 1985Google Scholar
  20. [Met]
    Y. Métivier, An Algorithm for Computing Asynchronous Automata in the Case of Acyclic Non-Commutation Graphs, Lect. Not. Comp. Sci. 267, pp.226–236, Springer, 1987Google Scholar
  21. [Sa]
    J. Sakarovitch, On regular trace languages, to appear in RAIRO Inf. Théor. et Appl.Google Scholar
  22. [Sz]
    M. Szijarto, A classification and closure properties of languages for descibing concurrent systems behaviours, Fundamenta Informaticae 4, pp.531–549, 1981Google Scholar
  23. [Wa]
    M. Wand, Final algebra semantics and data type extensions, Indiana University Tec. Rep. n' 65, 1979Google Scholar
  24. [Zi]
    W. Zielonka, Notes on asynchronous automata, Tec. Rep. Inst.of Math., Warsaw Tec. Univ., Poland, 1984 (to be pubbl. on RAIRO Inf. Theor.)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • D. Bruschi
    • 1
  • G. Pighizzini
    • 1
  • N. Sabadini
    • 1
  1. 1.Dipartimento Scienze dell'InformazioneMilano

Personalised recommendations