Polygon placement under translation and rotation

  • Francis Avnaim
  • Jean Daniel Boissonnat
Contributed Papers Geometrical Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 294)


Motion Planning Algorithm Polygonal Object Plane Sweep Algorithm Double Contact Free Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    AVNAIM F., BOISSONNAT J.D., Simultaneous containment of several polygons, 3rd ACM Symp. on Computational Geometry, Waterloo (June 1987).Google Scholar
  2. [2]
    AVNAIM F., BOISSONNAT J.D., B. FAVERJON, A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles, IEEE Conf. on Robotics and Automation, Philadelphia (1988).Google Scholar
  3. [3]
    BERGER M., Géométrie Volume 4: Formes quadratiques, coniques et quadriques, CEDIC/Fernand Nathan (1978).Google Scholar
  4. [4]
    CHAZELLE B., The polygon containment problem, in Advances in computer research, Vol. 1 (F.P. Preparata, ed.), JA Press, pp. 1–32.Google Scholar
  5. [5]
    FORTUNE S.J., Fast algorithms for polygon containment, Automata, Languages and Programming, in Lecture Notes in Computer Science 194,Springer Verlag, pp. 189–198Google Scholar
  6. [6]
    GUIBAS L., RAMSHAW L., STOLFI G., A kinematic framework for computational geometry, Proc. IEEE Symp. on Foudations of Comput. Sci. (1983), pp. 74–123.Google Scholar
  7. [7]
    KEDEM K., SHARIR M., An efficient motion planning algorithm for a convex polygonal object in 2-dimensional polygonal space, Tech. Rept. No 253, Comp. Sci. Dept., Courant Institute, (Oct. 1986).Google Scholar
  8. [8]
    LEVEN D., SHARIR M., On the number of critical free contacts of a convex polygonal object moving in 2-D polygonal space, Discrete and Computational Geometry, Vol. 2, No 3, 1987.Google Scholar
  9. [9]
    OTTMAN T., WIDMAYER P., WOOD D., A fast algorithm for Boolean mask operations, Computer Vision, Graphics and Image Processing, Vol. 30, 1985, pp. 249–268.Google Scholar
  10. [10]
    PREPARATA F.P., SHAMOS M.I., Computational geometry: an introduction, Springer Verlag, 1985.Google Scholar
  11. [11]
    SCHWARTZ J.T., SHARIR M., On the piano mover's problem I. The case of a two dimensional rigid polygonal body moving amidst polygonal barriers, Comm. Pure Appl. Math., 36 (1983), pp. 345–398.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Francis Avnaim
    • 1
  • Jean Daniel Boissonnat
    • 1
  1. 1.INRIA Sophia-Antipolis Route des LuciolesValbonneFrance

Personalised recommendations