Skip to main content

Hamiltonian deformations and optical fibers

  • Conference paper
  • First Online:
Integrable Systems and Applications

Part of the book series: Lecture Notes in Physics ((LNP,volume 342))

  • 144 Accesses

Abstract

In integrable, nonlinear systems an arbitrarily shaped initial pulse is known to break up into several solitons and a dispersive wave component. Similar behavior is often observed when substantial Hamiltonian deformations which destroy the system's integrability are present, as long as the Hamiltonian deformations have no explicit dependence on space or time. By contrast, this behavior is usually destroyed by non-Hamiltonian deformations even when they are quite small. Hence, it is usually sufficient to know a deformation's character to immediately determine its effect on solitons. Application of this result to optical fiber communication is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. L. McCall and E. L. Hahn, “Self-induced transparency by pulsed coherent light, Phys. Rev. Lett. 18, 908–911 (1967).

    Google Scholar 

  2. D. J. Korteweg and G. De Vries, “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,” Philos. Mag. Ser. 5 39, 422–443 (1895).

    Google Scholar 

  3. H. Washimi and T. Taniuti, “Propagation of ion acoustic solitary waves of small amplitude,” Phys. Rev. Lett. 17, 996–998 (1966).

    Google Scholar 

  4. V. E. Zakharov, “Collapse of Langmuir waves,” Sov. Phys. JETP 35, 908–914 (1972).

    Google Scholar 

  5. A. Hasegawa and Y. Kodama, “Signal transmission by optical solitons in a monomode fiber,” Proc. IEEE 69, 1145–1150 (1981).

    Google Scholar 

  6. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981). See Chapter 1.

    Google Scholar 

  7. M. D'Evelyn and G. J. Morales, “Properties of large amplitude Langmuir solitons,“ Phys. Fluids 21, 1997–2008 (1978).

    Google Scholar 

  8. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero dispersion wavelength of monomode optical fibers,” Optics Lett. 11, 464–468 (1986).

    Google Scholar 

  9. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Soliton at the zero-groupdispersion wavelength of single-mode fiber,” Optics Lett. 12, 628–630 (1987).

    Google Scholar 

  10. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983). See Chapter 2.

    Google Scholar 

  11. C. R. Menyuk, “Origin of solitons in the ‘real’ world,” Phys. Rev. A 33, 4367–4374 (1986).

    Google Scholar 

  12. C. R. Menyuk, “Application of Lie methods to autonomous Hamiltonian perturbations: Second order calculation,” in Nonlinear Evolutions, edited by J. P. P. Léon (World Scientific Publ., Singapore, 1988), pp. 571–592.

    Google Scholar 

  13. G. K. Keiser, Optical Fiber Communication (McGraw-Hill, New York, 1983). See Chapter 3.

    Google Scholar 

  14. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses with birefringent fibers,” Appl. Phys. Lett. 23, 142–144 (1973).

    Google Scholar 

  15. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1045–1048 (1980).

    Google Scholar 

  16. L. F. Mollenauer and R. H. Stolen, “Solitons in optical fibers,” Laser Focus 18(4), 193–198 (1982).

    Google Scholar 

  17. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Optics Lett. 12, 614–616 (1987).

    Google Scholar 

  18. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. II: Arbitrary amplitudes,” JOSA B 5, 392–402 (1988).

    Google Scholar 

  19. S. V. Manakov, “On the theory of two-dimensional stationary self-focussing of electromagnetic waves,” Sov. Phys. JETP 38, 248–253 (1974) [Zh. Eksp. Teor. Fiz. 65, 505–516 (1973)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Balabane P. Lochak C. Sulem

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Menyuk, C.R. (1989). Hamiltonian deformations and optical fibers. In: Balabane, M., Lochak, P., Sulem, C. (eds) Integrable Systems and Applications. Lecture Notes in Physics, vol 342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035673

Download citation

  • DOI: https://doi.org/10.1007/BFb0035673

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51615-6

  • Online ISBN: 978-3-540-46714-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics