Advertisement

Error tolerance method in multiple-valued logic

  • Soowoo Lee
Accepted Papers
  • 111 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1244)

Abstract

Because standard logic is based on only two truth values, it is not suitable for reasoning with uncertainty or vague knowledge. Such knowledge requires nonstandard logics, for example fuzzy logic, multiple-valued logic, probabilistic and possibilistic logic. We provide a logical environment and a proof procedure for representing and reasoning about this kinds of knowledge.

Keywords

Error Tolerance Error Distance Signed Logic Horn Clause Characterization Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Bibel. Automatic theorem proving. Vieweg Verlag, Braunschweig, 1987.Google Scholar
  2. 2.
    W. Bibel. Deduktion — Automatisierung der Logik. Handbuch der Infotmatik. Oldenbourg, München, 1992.Google Scholar
  3. 3.
    N.C.A. da Costa, J.J. Lu, and V.S. Subrahmanian. Automatic theorem proving in paraconsistent logics. pages 72–86. Foundations and Experimantal Result. Proc. 10th CADE, LNCS, Springer Verlag, 1989.Google Scholar
  4. 4.
    R. Hähnle. Uniform notation of tableaux rules for multiple-valued logics. In Proc. intentional Symposium on multiple-valued logics, pages 238–245. IEEE Press, 1991.Google Scholar
  5. 5.
    R. Hähnle. Exploiting data dependencies in many-valed logics. pages 48–69. Journal of applied Non-Classiccal Logics, 1996.Google Scholar
  6. 6.
    M. Kiefer and V.S. Subiahmanian. Theory of generalized annotated logic programming and its applications. pages 335–367. The journal of Logic Programming 12, 1992.Google Scholar
  7. 7.
    S.W. Lee. Deduktive Realisierung von Vagheit mittels einer mehrwertigen Logik. Erscheinen als Dissertation, Darmstadt, 1997.Google Scholar
  8. 8.
    J.J. Lu, N.V. Murray, and E. Rosenthal. Signed formulas and annotated logics. pages 48–53. Proc. of the 23rd IEEE International Symposium on Multiple-Valued Logic, 1993.Google Scholar
  9. 9.
    N.V. Murray, J.J. Lu, and E. Rosenthal. Signed formulas and fuzzy operator logics. pages 75–84. Proc. of the 8th International Symposium on Methodologies for Intelligent Systems, 1994.Google Scholar
  10. 10.
    N.V. Murray and E. Rosenthal. Resolution and path dissolution in multiple-valued logics. pages 570–579. Proc. of the International Symposium on Methodologies for Intelligent Systems, 1991.Google Scholar
  11. 11.
    N.V. Murray and E. Rosenthal. Adapting classical inference technique to multiple-valued logics using signed formulas. pages 237–253. Fundamenta Informaticae Journal 21, 1994.Google Scholar
  12. 12.
    T. Weigert, X.H. Liu, and J.P. Tsai. λ-implication in fuzzy operator logic. pages 259–278. Information Science, 1991.Google Scholar
  13. 13.
    T.J. Weigert, J.P. Tsai, and X.H. Liu. Fuzzy operator logic and fuzzy resolution. pages 59–78. Journal of Automated Reasoning 10, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Soowoo Lee
    • 1
  1. 1.FB Informatik, FG IntellektikTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations