Graduality by means of analogical reasoning

  • J. Delechamp
  • B. Bouchon-Meunier
Accepted Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1244)


There exist different types of gradual rules, involving graduality on the truth value, the possibility, the certainty associated with propositions, or dealing with the degree of similarity or the proximity of observations with reference propositions, or a graduality on the values taken by variables. In this paper, we describe the properties of gradual rules according to variations of values of the variables. Then, we extend the results to a graduality expressed through linguistic modifiers. Finally, we show that a gradual knowledge representation through modifiers can be linked with analogical reasoning.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bouchon 88]
    Bouchon B., Stability of linguistic modifiers compatible with a fuzzy logic, in Uncertainty in Intelligent Systems, Lecture Notes in Computer Science, vol. 313, Springer Verlag, 1988Google Scholar
  2. [Bouchon 90]
    Bouchon-Meunier B., Comment remplacer des calculs par des règles simples dans le cadre d'une logique floue, Cognitiva 90,1990Google Scholar
  3. [Bouchon & Desprès 1990]
    Bouchon B. and S. Desprès, Acquisition numérique/symbolique de connaissances graduelles, Actes des 3èmes journées du PRC-GDR Intelligence Artificielle, Paris, Hermès, 1990Google Scholar
  4. [Bouchon 92]
    Bouchon-Meunier B., Fuzzy logic and knowledge representation using linguistic modifiers, in Fuzzy logic for the management of uncertainty (L.A. Zadeh, J. Kacprzyk, eds.), John Wiley & Sons, 1992, pp. 399–414Google Scholar
  5. [Bouchon & Yao 92]
    Bouchon-Meunier B. and Jia Yao, Linguistic modifiers and gradual membership to a category, International Journal of Intelligent Systems 7, pp 25–36, 1992Google Scholar
  6. [Bouchon & Valverde 93]
    Bouchon-Meunier B. and L. Valverde, Analogical Reasoning and Fuzzy Resemblance, in Uncertainty in Intelligent Systems (B. Bouchon-Meunier, L. Valverde, R.R. Yager, eds.), Elsevier Science Pub, pp 247–255, 1993Google Scholar
  7. [Buisson & Prade 89]
    Buisson B. and Prade H., Un système d'inférence pratiquant l'interpolation au moyen de règles à prédicats graduels — Une application au calcul de rations caloriques, Actes de la convention Intelligence Artificielle 88-89, Publ. Hermès, Paris, 1989Google Scholar
  8. [Dubois & Prade 87]
    Dubois D. and H. Prade, Fuzzy numbers: an Overview, in J.C. Bezdek (dir.) Analysis of Fuzzy Information, vol. 1, Mathematics and Logic, CRC Press, Boca Raton, pp 3–39Google Scholar
  9. [Dubois et Prade 89]
    Dubois D. and H. Prade, A typology of fuzzy “If...then...rules”, in Proc. 3rd Inter. Fuzzy Systems Association Congress, Seattle, Wash., 1989, pp 782–785Google Scholar
  10. [Dubois et Prade 90]
    Dubois D. and H. Prade, Gradual inference rules in approximate reasoning, Information Sciences, 1990Google Scholar
  11. [Dubois et Prade 92]
    Dubois D. and H. Prade, Fuzzy rules in knowledge-based systems-Modelling gradeness, uncertainty and preference-, in An introduction to fuzzy logic applications in intelligent systems, (R.R. Yager, L.A. Zadeh, eds.) Kluwer Academic Publishers, 1992Google Scholar
  12. [Dubois, Prade & Ughetto 96]
    Dubois D., H. Prade and L. Ughetto, On Fuzzy Interpolation, in Systèmes de Règles Floues: cohérence, redondance et interpolation, Rapport IRIT/96-17-R, mai 1996Google Scholar
  13. [Koczy & Hirota 93]
    Koczy L.T., Hirota K., Approximate Reasoning by Linear Rule Interpolation and General Approximation, International Journal of Approximate Reasoning, 9:197–225, 1993Google Scholar
  14. [Mizumoto 94]
    Mizumoto M., Multifold Fuzzy Reasoning as Interpolative Reasoning, in Fuzzy Sets, Neural Networks and Soft Computing, (R.R. Yager and L.A. Zadeh, eds.) Van Nostrand Reinhold, New-York, 1994Google Scholar
  15. [Sanchez 84]
    Sanchez E., Solution of fuzzy equations with extended operations, Fuzzy Sets Syst., 12, p237, 1984Google Scholar
  16. [Turksen I.B. & Zhao 88]
    Turksen I.B. and Zhao Zhong, An Approximate Analogical Reasoning Approach Based on Similarity Measures, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 18, no 6, nov./dec. 1988Google Scholar
  17. [Ughetto,Dubois & Prade 95]
    Ughetto L., Dubois D. and H. Prade, La cohérence des systèmes de règles graduelles, Rencontres francophones sur la logique floue, Cepadues Editions, 1995Google Scholar
  18. [Zadeh 72]
    Zadeh L.A., A Fuzzy-Set Theoretic Interpretation of Linguistic Hedges, J. Cybernetics 2, 2, pp. 4–34, 1972Google Scholar
  19. [Zadeh 83]
    Zadeh L.A., The role of fuzzy logic in the management of uncertainty in Expert Systems, Fuzzy Sets and Systems 11, pp. 199–227, 1983.Google Scholar
  20. [Zadeh 90]
    Zadeh L.A., Interpolative Reasoning Based on Fuzzy Logic and its Application to Control and System Analysis, invited lecture, abstract in the Proc. of the Int. Conf. on Fuzzy Logic & Neural Networks, Iizuka, Japan, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • J. Delechamp
    • 1
    • 2
  • B. Bouchon-Meunier
    • 2
  1. 1.LCPCParisFrance
  2. 2.UPMC Case 169LAFORIAParis Cédex 05France

Personalised recommendations