Advertisement

Integrating preference orderings into argument-based reasoning

  • Leila Amgoud
  • Claudette Cayrol
Accepted Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1244)

Abstract

Argument-based reasoning is a promising approach to handle inconsistent belief bases. The basic idea is to justify each plausible conclusion by acceptable arguments. The purpose of this paper is to enforce the concept of acceptability by the integration of preference orderings. Pursuing previous work on the principles of preference-based argumentation, we focus here on the definition of new acceptability classes of arguments.

Keywords

Preference Relation Preference Ordering Belief Base Argumentation Framework Defeasible Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AC96]
    L. Amgoud, C. Cayrol. Etude comparative de relations de préférence entre arguments: Calcul avec un ATMS. Tech. Report no96-33-R, IRIT, Univ. Paul Sabatier, Toulouse, Sept. 96.Google Scholar
  2. [AC97]
    L. Amgoud, C. Cayrol. Intégration de préférences dans le raisonnement argumentatif. Tech. Report no97-04-R, IRIT, Univ. Paul Sabatier, Toulouse, Fev. 97.Google Scholar
  3. [ACL96]
    L. Amgoud, C. Cayrol, D. Le Berre. Comparing Arguments using Preference Orderings for Argument-based Reasoning. Proc. ICTAI'96, 400–403.Google Scholar
  4. [BDP93]
    S. Benferhat, D. Dubois, H. Prade. Argumentative Inference in Uncertain and Inconsistent Knowledge Bases. Proc. 9° Conf. on Uncertainty in Artificial Intelligence, 411–419, 1993.Google Scholar
  5. [BDP95]
    S. Benferhat, D. Dubois, H. Prade. How to infer from inconsistent beliefs without revising? Proc. IJCAI'95, 1449–1455.Google Scholar
  6. [Cay95a]
    C. Cayrol. On the relation between Argumentation and Non-monotonic Coherence-based Entailment. Proc. IJCAI'95, 1443–1448.Google Scholar
  7. [Cay95b]
    C. Cayrol. From Non-monotonic Syntax-based Entailment to Preference-based Argumentation. In: Symbolic and Quantitative Approaches to Reasoning and Uncertainty (C. Froidevaux, J. Kohlas Eds.), LNAI 946, Springer Verlag, 99–106, 1995.Google Scholar
  8. [CLS95]
    C. Cayrol, M.C. Lagasquie-Schiex. Non-monotonic Syntax-Based Entailment: A Classification of Consequence Relations. In: Symbolic and Quantitative Approaches to Reasoning and Uncertainty (C. Froidevaux, J. Kohlas Eds.), LNAI 946, Springer Verlag, 107–114, 1995.Google Scholar
  9. [CRS93]
    C. Cayrol, V. Royer, C. Saurel. Management of preferences in Assumption-Based Reasoning. In: Advanced Methods in Artificial Intelligence (B. Bouchon-Meunier, L. Valverde, R.Y. Yager Eds.), LNCS 682, Springer Verlag, 13–22, 1993.Google Scholar
  10. [Dun93]
    P. M. Dung. On the acceptability of arguments and its fundamental role in non-monotonic reasoning and logic programming. Proc. IJCAI'93, 852–857.Google Scholar
  11. [Dun95]
    P.M. Dung. On the acceptability of arguments and its fundamental role in non-monotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77: 321–357, 1995.Google Scholar
  12. [EFK93]
    M. Elvang-Goransson, J. Fox, P. Krause. Acceptability of arguments as “logical uncertainty”. Proc. ECSQARU'93, Lecture Notes in Computer Science, Springer Verlag, Vol. 747, 85–90.Google Scholar
  13. [EH95]
    M. Elvang-Goransson, A. Hunter. Argumentative logics: Reasoning with classically inconsistent information. Data & Knowledge Engineering, 16: 125–145, 1995.Google Scholar
  14. [Hun94]
    A. Hunter. Defeasible reasoning with structured information. Proc. KR'94, 281–292.Google Scholar
  15. [Pol92]
    J.L. Pollock. How to reason defeasibly. Artificial Intelligence, 57: 1–42, 1992.Google Scholar
  16. [PS96]
    H. Prakken, G. Sartor. A System for Defeasible Argumentation, with Defeasible Priorities. Proc. FAPR'96, Lecture Notes in Artificial Intelligence, Springer Verlag, Vol.1085, 510–524.Google Scholar
  17. [SL92]
    G.R. Simari, R.P. Loui. A mathematical treatment of defeasible reasoning and its implementation. Artificial Intelligence, 53: 125–157, 1992.Google Scholar
  18. [Vre91]
    G. Vreeswijk. The feasibility of Defeat in Defeasible Reasoning. Proc. KR'91, 526–534.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Leila Amgoud
    • 1
  • Claudette Cayrol
    • 1
  1. 1.Institut de Recherche en Informatique de Toulouse (I. R. I. T.)Université Paul SabatierToulouse CedexFrance

Personalised recommendations