Skip to main content

An approach to variable metric bundle methods

  • Invited Presentations
  • Conference paper
  • First Online:
System Modelling and Optimization

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 197))

Abstract

To minimize a convex function f, we state a penalty-type bundle algorithm, where the penalty uses a variable metric. This metric is updated according to quasi-Newton formulae based on Moreau-Yosida approximations of f. In particular, we introduce a “reversal” quasi-Newton formula, specially suited for our purpose. We consider several variants in the algorithm and discuss their respective merits. Furthermore, we accept a degenerate penalty term in the Moreau-Yosida regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bonnans, J.Ch. Gilbert, C. Lemaréchal, and C. Sagastizábal. A family of Variable Metric Proximal methods. Rapport de Recherche 1851, INRIA, 1993.

    Google Scholar 

  2. E. Cheney and A. Goldstein. Newton's method for Convex Programming and Tchebycheff approximations. Numerische Mathematik, 1:253–268, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Correa and C. Lemaréchal. Convergence of some algorithms for convex minimization. Manuscript, INRIA, 78153 Le Chesnay Cedex (France), 1993.

    Google Scholar 

  4. J.E. Dennis and J.J. Moré. Quasi-Newton methods, motivation and theory. SIAM Review, 19:46–89, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistic Quarterly, 3:95–110, 1956.

    Article  MathSciNet  Google Scholar 

  6. J.B. Hiriart-Urruty and C. L-Lemaréchal. Convex Analysis and Minimization Algorithms. Springer-Verlag, 1993.

    Google Scholar 

  7. J. E. Kelley. The cutting plane method for solving convex programs. J. Soc. Indust. Appl. Math., 8:703–712, 1960.

    Article  MathSciNet  Google Scholar 

  8. K.C. Kiwiel. An aggregate subgradient method for nonsmooth convex minimization. Mathematical Programming, 27:320–341, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  9. K.C. Kiwiel. Proximity control in bundle methods for convex nondifferentiable minimization. Mathematical Programming, 46:105–122, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Lemaréchal. Bundle methods in nonsmooth optimization. In C. Lemaréchal and R. Mifflin, editors, Nonsmooth optimization. Pergamon Press, Oxford, 1978.

    Google Scholar 

  11. R. Mifflin. Semi-smooth and semi-convex functions in constrained optimization. SIAM Journal on Control and Optimization, 15:959–972, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  12. J.J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société Mathématique de France, 93:273–299, 1965.

    MATH  MathSciNet  Google Scholar 

  13. S.S. Oren and E. Spedicato. Optimal conditioning of self-scaling variable metric algorithms. Mathematical Programming, 10:70–90, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  14. M.J.D. Powell. Some global convergence properties of a variable metric algorithm for minimization without exact line searches. In R.W. Cottle and C.E. Lemke, editors, Nonlinear Programming, number 9 in SIAM-AMS Proceedings. American Mathematical Society, Providence, RI, 1976.

    Google Scholar 

  15. N. Shor. Utilization for the operation of space dilatation in the minimization of convex function. Cybernetics, 6:7–15, 1970.

    Article  Google Scholar 

  16. N. Shor. Minimization methods for non-differentiable functions. Springer-Verlag, Berlin, 1985.

    Book  MATH  Google Scholar 

  17. V. Skokov. Note on minimization methods employing space stretching. Cybernetics, 10:689–692, 1973.

    Article  Google Scholar 

  18. H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM Journal on Optimization, 2(1):121–152, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Yosida. Functional Analysis. Springer Verlag, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Henry Jean-Pierre Yvon

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Lemaréchal, C., Sagastizábal, C. (1994). An approach to variable metric bundle methods. In: Henry, J., Yvon, JP. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035464

Download citation

  • DOI: https://doi.org/10.1007/BFb0035464

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19893-2

  • Online ISBN: 978-3-540-39337-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics