Skip to main content

Some uses of optimization for studying the control of animal movement

  • Invited Presentations
  • Conference paper
  • First Online:
  • 1312 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 197))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McMahon, T.A. and Greene, P.R. (1979). The influence of track compliance on running. J. Biomech. 12:893–904.

    Article  Google Scholar 

  2. Young, R.P., Scott, S.H., and Loeb, G.E. (1992). An intrinsic mechanism to stabilize posture—joint-angle-dependent moment arms of the feline ankle muscles. Neurosci. Letters.

    Google Scholar 

  3. Levine, W.S., He, J., Loeb, G.E., Rindos, A.J. and Weytjens, J.L.F., (1993) (submitted to J. Biomech.)

    Google Scholar 

  4. Partridge, L.D. and Benton, L.A. (1981). Muscle, the motor, from Handbook of Physiology—The Nervous System, Vol. II. Part 1. Williams and Wilkins, MD. 43–106.

    Google Scholar 

  5. Rack, P.M.H. and Westbury, D.R. (1984). Elastic properties of the cat soleus tendon and their functional importance. J. Physiol. 347:479–495.

    Google Scholar 

  6. Hatze, H. (1977). A myocybernetic control model of skeletal muscle. Biol. Cybern 25:103–119.

    Article  MATH  Google Scholar 

  7. Otten, E. (1988). Concepts and models of functional architecture in skeletal muscle. Exerc. Sport Sci. Rev. 89–137.

    Google Scholar 

  8. Ziegler, F. (1991). Mechanics of Solids and Fluids, Springer-Verlag, 598–600.

    Google Scholar 

  9. Gordon, A.M., Huxley, A.F. and Julian, F.J. (1966). The variation of isometric tension with sarcomere length in vertebral muscle fibres. J. Physiol. 184:170–193.

    Google Scholar 

  10. Gottlieb, G.L. and Agarwal, G.C. (1971). Dynamic relationship between isometric muscle tension and the electromyogram in man. J. Appl. Physiol., 30:345.

    Google Scholar 

  11. Meijers, L.M.M., Teulings, J.L.H.M. and Eijkman, E.G.J. (1976). Model of the electromyographic activity during brief isometric contractions. Biol. Cybern. 25:7–16.

    Google Scholar 

  12. Hof, A.L. and Van den Berg, J. (1981). EMG to force processing. I: An electrical analogue of the Hill muscle model. J. Biomech., 14 (11): 747–758.

    Article  Google Scholar 

  13. Perry, J. and Bekey, G.A. (1981). EMG-force relationships in skeletal muscle. CRC Crit. Rev. Biomed. Eng. (December).

    Google Scholar 

  14. Burke, R.E. (1981). Motor units: Anatomy, physiology and functional organization from Handbook of Physiology—The Nervous System, Vol. II, Part 1, Williams and Wilkins, MD, 345–422.

    Google Scholar 

  15. Henneman, E., Somjen, G., and Carpenter, D. (1965). Excitability and inhibitability of motoneurons of different sizes. J. Neurobiol. 28:599–620.

    Google Scholar 

  16. Rack, P.M.H. and Westbury, D.R. (1969). The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J. Physiol. 204:443–460.

    Google Scholar 

  17. Gaudiano, P. and Grossberg, S. (1991). Vector associative maps: unsupervised real-time error-based learning and control of movement trajectories. Neural Networks 4, pp. 147–183.

    Article  Google Scholar 

  18. Levine, W.S., Christodoulou, M. and Zajac, F.E. (1983). On propelling a rod to a maximum vertical or horizontal distance, Automatica 19:3, pp. 321–324.

    Article  MATH  Google Scholar 

  19. Hatze, H. (1976). The complete optimization of a human motion. Math. Biosci. 28, pp. 99–135.

    Article  MATH  MathSciNet  Google Scholar 

  20. Pandy, M.G. Zajac, F.E., Sim, E. and Levine, W.S. (1990), An optimal control model for maximum-height human jumping, J. Biomech. 23:12, pp. 1185–1198.

    Article  Google Scholar 

  21. Pandy, M.G. and Zajac, F.E. (1991), Optimal muscular coordination strategies for jumping, J. Biomech. 24:1, pp. 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Henry Jean-Pierre Yvon

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Levine, W.S. (1994). Some uses of optimization for studying the control of animal movement. In: Henry, J., Yvon, JP. (eds) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035457

Download citation

  • DOI: https://doi.org/10.1007/BFb0035457

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19893-2

  • Online ISBN: 978-3-540-39337-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics