Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agostoni E, Taglietti A, Setnikar I (1957) Absorption force of the capillaries of the visceral pleura in determination of the intrapleural pressure. Am J Physiol 191:277–282

    Google Scholar 

  • Agostoni E, Piiper J (1962) Capillary pressure and distribution of vascular resistance in isolated lung. Am J Physiol 202:1033–1036

    Google Scholar 

  • Armstrong JD, Hughes JMB (to be published) A combined radiographic and gas dilution technique for estimating total lung tissue volume

    Google Scholar 

  • Baile EM, Pare PD, Dahlby RW, Hogg JC (1979) Regional distribution of extravascular water and hematocrit in the lung. J Appl Physiol: Respirat Environ Exercise Physiol 46:937–942

    Google Scholar 

  • Bean J, Beckman D (1969) Centrogenic pulmonary pathology in mechanical head injury. J Appl. Physiol 27:807–812

    Google Scholar 

  • Bhattacharya J, Staub NC (1979) Direct measurement of microvascular pressure in the isolated, perfused dog lung. Microvasc Res 17:86

    Google Scholar 

  • Blake L, Staub NC (1976) Pulmonary vascular transport in sheep. A mathematical model. Microvasc Res 12:197–220

    Google Scholar 

  • Bland RD, Staub NC (1977) Effect of hypoxia on lung microvascular membrane permeability in unanesthetised sheep. In: Bhatia B, Chhina GS, Singh B (eds) Selected topics in environmental biology. Pergamon Press, New Delhi, pp 357–361

    Google Scholar 

  • Bø G, Hauge A, Nicolaysen G (1977) Alveolar pressure and lung volume as determinants of net transvascular fluid filtration. J Appl Physiol: Respirat Environ Exercise Physiol 42:476–482

    Google Scholar 

  • Boyd RDH, Hill JR, Humphreys RW, Normand ICS, Reynolds EOR, Strang LB (1969) Permeability of lung capillary to macromolecules in fetal and new-born lambs and sheep. J Physiol (Lond) 34:75–80

    Google Scholar 

  • Brigham KL (1979) Lung lymph composition and flow in experimental pulmonary edema. In: Fishman AP, Renkin EM (eds) Pulmonary edema. American Physiological Society, Bethesda, MD, pp 161–173

    Google Scholar 

  • Brigham KL, Owen PJ (1975) Increased sheep lung vascular permeability caused by histamine. Circ Res 37:647–657

    Google Scholar 

  • Brigham K, Woolverton W, Blake L, Staub NC (1974) Increased sheep lung vascular permeability caused by Pseudomonas bacteremia. J Clin Invest 54:792–804

    Google Scholar 

  • Brigham K, Owen P, Bowers R (1976) Increased permeability of sheep lung vessels to protein following Pseudomonas bacteremia. Microvasc Res 11:415–419

    Google Scholar 

  • Cander L (1959) Solubility of inert gases in human lung tissue. J Appl Physiol 14:538–540

    Google Scholar 

  • Cander L, Forster RE (1959) Determination of pulmonary parenchymal tissue volume and pulmonary capillary blood flow in man. J Appl Physiol 14:541–551

    Google Scholar 

  • Casley-Smith JR (1972) The role of the endothelial intercellular junctions in the functioning of the initial lymphatics. Angiologia 9:106–131

    Google Scholar 

  • Chait A (1972) Interstitial pulmonary edema. Circulation 45:1323–1330

    Google Scholar 

  • Chase WH (1959) Extracellular distribution of ferrocyanide in muscle. Arch Pathol Lab Med 67:525–532

    Google Scholar 

  • Chinard FP (1966) The permeability characteristics of the pulmonary blood-gas barrier. In: Caro CG (ed) Advances in respiratory physiology. Arnold, London, pp 106–147

    Google Scholar 

  • Chinard FP (1975) Estimation of extravascular lung water by indicator-dilution techniques. Circ Res 37:137–145

    Google Scholar 

  • Ciba Foundation Symposium 38 (1976) Lung liquids. Porter R, O'Connor M (eds), Excerpta Medica, Amsterdam

    Google Scholar 

  • Clements JA (1961) Pulmonary edema and permeability of alveolar membranes. Arch Environ Health 2:280–283

    Google Scholar 

  • Coates G, Gray G, Mansell A, Nahmias C, Powles A, Sutton J, Webber C (1979) Changes in lung volume, lung density and distribution of ventilation during hypobaric exercise. J Appl Physiol: Respirat Environ Exercise Physiol 46:752–755

    Google Scholar 

  • Conrad B (1979) Theoretical concepts and experimental data in Compton densitometry. In: Matthys H (ed) Biomedical engineering and data processing in pneumology. Karger, Basel (Progress in respiration research, vol 11, pp 33–47)

    Google Scholar 

  • Crosbie WA, Snowden S, Parson V (1972) Changes in lung capillary permeability in renal failure. Br Med J IV:388–390

    Google Scholar 

  • Dock DS, Kraus WL, McGuire LB, Hyland JW, Haynes FW, Dexter L (1961) The pulmonary blood volume in man. J Clin Invest 40:317–328

    Google Scholar 

  • Editorial (1976) Pulmonary oedema. Lancet II:350–351

    Google Scholar 

  • Egan EA, Nelson RM, Olver RE (1976) Lung inflation and alveolar permeability to non-electrolytes in the adult sheep in vivo. J Physiol (Lond) 260:409–424

    Google Scholar 

  • Erdmann J, Vaughan T, Brigham K, Woolverton W, Staub N (1975) Effect of increased vascular pressure on lung fluid balance in unanesthetized sheep. Circ Res 37:271–284

    Google Scholar 

  • Farney RJ, Morris AH, Gardner RM, Armstrong JD (1977) Rebreathing pulmonary capillary and tissue volume in normals after saline infusion. J Appl Physiol: Respirat Environ Exercise Physiol 43:246–253

    Google Scholar 

  • Fazio F, Jones T, MacArthur CGC, Rhodes CG, Steiner RES, Hughes JMB (1976) Measurement of regional pulmonary oedema in man using radioactive water (H2 15O). Br J Radiol 49:393–397

    Google Scholar 

  • Fishman AP, Renkin EM (eds) (1979) Pulmonary edema. American Physiological Society, Bethesda, MD

    Google Scholar 

  • Flick MR, Perel A, Kageler W, Staub NC (1979) Regional extravascular lung water in normal sheep. J appl Physiol: Respirat Environ Exercise Physiol 46:932–936

    Google Scholar 

  • Fowler KT, West JB, Pain MCF (1966) Pressure-flow characteristics of horizontal lung preparations of minimal height. Resp Physiol 1:88–98

    Google Scholar 

  • Gaar KA Jr, Taylor AE, Owens LJ (1967) Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am J Physiol 213:910–914

    Google Scholar 

  • Garlick DG, Renkin EM (1970) Transport of large molecules from plasma to interstitial fluid and lymph in dogs. Am J Physiol 219:1959–1605

    Google Scholar 

  • Gee MH, Staub NC (1977) Role of bulk fluid flow in protein permeability of the dog lung alveolar membrane. J Appl Physiol: Respirat Environ Exercise Physiol 42:144–149

    Google Scholar 

  • Gersh I, Catchpole HR (1960) The nature of ground substance of connective tissue. Perspect Biol Med 3:282–319

    Google Scholar 

  • Giuntini C, Pistolesi M, Begliomini E, Pollastri A, Ballestra AM, Maseri A (1979) Chest X-ray versus dilution method in the assessment of pulmonary edema in patients with coronary heart disease. In: Giuntini C, Panuccio P (eds) Cardiac lung. Piccin Medical Books, Padua, pp 251–259

    Google Scholar 

  • Glazier JB, Hughes JMB, Maloney JE, West JB (1967) Vertical gradient of alveolar size in lungs of dogs frozen intact. J Appl Physiol 23:694–705

    Google Scholar 

  • Glazier JB, Hughes JMB, Maloney JE, West JB (1969) Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J Appl Physiol 26:65–76

    Google Scholar 

  • Goldberg HS (1979) Effect of lung volume history on rate of edema formation in isolated canine lobe. J Appl Physiol: Respirat Environ Exercise Physiol 45:880–884

    Google Scholar 

  • Goresky CA, Warnica JW, Burgess JH, Nadeau BE (1975) Effect of exercise on dilution estimates of extravascular lung water and on the carbon monoxide diffusing capacity in normal adults. Circ Res 37:379–389

    Google Scholar 

  • Gorin AB, Weidner WJ, Demling RH, Staub NC (1978) Noninvasive measurement of pulmonary transvascular protein flux in sheep. J Appl Physiol: Respirat Environ Exercise Physiol 45:225–233

    Google Scholar 

  • Goshy M, Lai-Fook SJ, Hyatt RE (1979) Perivascular pressure measurements by wick catheter technique in isolated dog lobes. J Appl Physiol: Respirat Environ Exercise Physiol 46:950–955

    Google Scholar 

  • Guyton AC (1963) A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ Res 12:399–414

    Google Scholar 

  • Guyton AC (1969) Introduction to part 1. In: Fishman AP, Hecht HH (eds) The pulmonary circulation and interstitial space. University of Chicago Press, Chicago, pp 3–7

    Google Scholar 

  • Guyton AC, Lindsey AW (1959) Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ Res 1:649–657

    Google Scholar 

  • Hakim AA, Lifson N (1969) Effects of pressure on water and solute transport by dog intestinal mucosa in vitro. Am J Physiol 216:276–284

    Google Scholar 

  • Harari A, Rapin M, Regnier B, Comoy J, Caron JP (1976) Normal pulmonary capillary pressure in the late phase of neurogenic pulmonary oedema. Lancet I:494

    Google Scholar 

  • Heather JD, Hughes JMB, MacArthur CGC, Rhodes CG, Swinburne AD (1978) Assessment of lung water with inhaled C1 5O2 and injected H2 1 5O. J Physiol 284:103–104P

    Google Scholar 

  • Horsfield K (1978) Morphometry of the small pulmonary arteries in man. Circ Res 42:593–597

    Google Scholar 

  • Hounsfield GN (1973) Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol 46:1016–1022

    Google Scholar 

  • Howell JBL, Permutt S, Proctor DF, Riley RL (1961) Effect of inflation of the lung on different parts of pulmonary vascular bed. J Appl Physiol 16:71–76

    Google Scholar 

  • Hughes JMB (1977) Pulmonary circulation and fluid balance. In: Widdicombe JG (ed) Respiratory physiology II. University Park Press, Baltimore (International review of science — Physiology, vol 14, pp 135–183)

    Google Scholar 

  • Hultgren HN, Lopez C, Lundberg E, Miller H (1964) Physiologic studies of pulmonary edema at high altitude. Circulation 29:393–408

    Google Scholar 

  • Hultgren HN, Grover RF, Hartley LH (1971) Abnormal circulatory responses to high altitude in subjects with a previous history of high-altitude pulmonary edema. Circulation 44:759–770

    Google Scholar 

  • Hurley JV (1978) Current views on the mechanisms of pulmonary oedema. J Pathol 125:59–79

    Google Scholar 

  • Iliff LD (1971) Extra-alveolar vessels and edema development in excised dog lungs. Circ Res 28:524–532

    Google Scholar 

  • Jacobsson S, Kjellmer I (1964) Flow and protein content of lymph in resting and exercising skeletal muscle. Acta Physiol Scand 60:278–285

    Google Scholar 

  • Jones T, Jones HA, Rhodes CG, Buckingham PD, Hughes JMB (1976) Distribution of extravascular fluid volumes in isolated perfused lungs measured with H2 15O. J Clin Invest 57:706–713

    Google Scholar 

  • Kapanci Y, Assimacopoulos A, Zwahlen A, Irle C, Gabbiani G (1975) “Contractile interstitial cells” in pulmonary alveolar septa. J Cell Biol 60:375–392

    Google Scholar 

  • Karnovsky MJ, Rice DF (1969) Exogenous cytochrome C as an ultrastructural tracer. J Histochem Cytochem 17:751–753

    Google Scholar 

  • Kerley P (1962) Cardiac failure. In: Shank SC, Verley P (eds) A text-book of X-ray diagnosis, 3rd ed, vol 2. Lewis, London, pp 97–108

    Google Scholar 

  • Kuida H, Hinshaw LB, Gilbert RP, Visscher MB (1958) Effect of gram-negative endotoxin on pulmonary circulation. Am J Physiol 192:335–344

    Google Scholar 

  • Laurent TC (1964) The interaction between polysaccharides and other molecules. 9. The exclusion of molecules from hyaluronic acid gels and solutions. Biochem J 93:106–112

    Google Scholar 

  • Lassen NA, Sejrsen P (1971) Monoexponential extrapolation of tracer clearance curves in kinetic analysis. Circ Res 29:76–87

    Google Scholar 

  • Lee BC, van der Zee H, Malik AB (1979) Site of pulmonary edema after unilateral micro-embolization. J Appl Physiol: Respirat Environ Exercise Physiol 47:556–560

    Google Scholar 

  • Lee G de J (1972) Pulmonary oedema. In: Yu PN, Goodwin JF (eds) Progress in cardiology I. Lea & Febiger, Philadelphia, pp 261–283

    Google Scholar 

  • Luisada AA (1967) Mechanism of neurogenic pulmonary edema. Am J Cardiol 20:66–68

    Google Scholar 

  • Magno M, Szidon JP (1976) Hemodynamic pulmonary edema in dogs with acute and chronic lymphatic ligation. Am J Physiol 231:1777–1782

    Google Scholar 

  • Macklin CC (1946) Evidences of increase in the capacity of pulmonary arteries and veins in dogs, cats and rabbits during inflation of the freshly excised lung. Rev Can Biol 5:199–232

    Google Scholar 

  • Marshall BE, Teichner RL, Kallos T, Sugerman HJ, Wyche MQ, Tantum KR (1971) Effects of posture and exercise on the pulmonary extravascular water volume in man. J Appl Physiol 31:375–379

    Google Scholar 

  • McNamee J, Vreim CE, Staub NC (1977) Improved three pore model for lung microvasculature. Fed Proc 36:427

    Google Scholar 

  • Mellins RB, Levine OR, Skalak R, Fishman AP (1969) Interstitial pressure in the lungs. Circ Res 24:197–212

    Google Scholar 

  • Meyer EC, Ottaviano R (1974) Right lymphatic duct distribution volume in dogs — relationship to pulmonary interstitial volume. Circ Res 35:197–203

    Google Scholar 

  • Meyer BJ, Meyer A, Guyton AC (1968) Interstitial fluid pressure v. negative pressure in the lung. Circ Res 22:263–271

    Google Scholar 

  • Michel CC (1976) (Discussion) Permeability of pulmonary vascular endothelium. In: Lung liquids Porter R, O'Connor M (eds) Ciba Foundation Symposium 38. Excerpta Medica, Amsterdam, pp 39–47

    Google Scholar 

  • Milic-Emili J, Henderson JAM, Dolovich MB, Trop D, Kaneko K (1966) Regional distribution of inspired gas in the lung. J Appl Physiol 21:749–759

    Google Scholar 

  • Miller WC, Simi WW, Rice DL (1978) Contribution of systemic venous hypertension to the development of pulmonary edema in dogs. Circ Res 43:598–600

    Google Scholar 

  • Muir AL, Hall DL, Despas P, Hogg JC (1972) Distribution of blood flow in lungs in acute pulmonary edema in dogs. J Appl Physiol 33:763–769

    Google Scholar 

  • Nakahara K, Kimura K, Maeda M, Masaoka A, Manabe H (1973) Quantitative assessment of pulmonary edema induced by the ligation of lymphatics in dogs. Med J Osaka Univ 23:199–214

    Google Scholar 

  • Nicolaysen G, Hauge A (1980) Determinants of transvascular fluid shifts in zone 1 lungs. J Appl Physiol: Respirat Environ Exercise Physiol 48:256–264

    Google Scholar 

  • Nicolaysen G, Nicolaysen A, Staub NC (1975) A quantitative radioautographic comparison of albumin concentration in different sized lymph vessels in normal mouse lungs. Microvasc Res 10:138–152

    Google Scholar 

  • Nicolaysen G, Waaler BA, Aarseth P (1979) On the existence of stretchable pores in the exchange vessels of the isolated rabbit lung preparation. Lymphology 12:201–207

    Google Scholar 

  • Noble WH, Severinghaus JW (1972) Thermal and conductivity dilution curves for rapid quantitation of pulmonary edema. J Appl Physiol 32:770–775

    Google Scholar 

  • Noble WH, Obdrzalek J, Kay JC (1973) A new technique for measuring pulmonary edema. J Appl Physiol 34:508–512

    Google Scholar 

  • Noble WH, Kay JC, Obdrzalek J (1975) Lung mechanics in hypervolemic pulmonary edema. J Appl Physiol 38:681–687

    Google Scholar 

  • Noble WH, Kay JC, Maret KH, Coskanelte G (1980) Reappraisal of extravascular lung thermal volume as a measure of pulmonary edema. J Appl Physiol Respirat Environ Exercise Physiol 48:120–129

    Google Scholar 

  • Ohkuda K, Nakahara K, Weidner J, Binder A, Staub NC (1978) Lung fluid exchange after uneven pulmonary artery obstruction in sheep. Circ Res 43:152

    Google Scholar 

  • Pang LM, Mellins RB, Rodriguez-Martinez F (1978) Effect of acute lymphatic obstruction on fluid accumulation in the chest in dogs. J Appl Physiol 39:985–989

    Google Scholar 

  • Pappenheimer JR, Soto-Rivera A (1948) Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hind limbs of cats and dogs. Am J Physiol 152:471–495

    Google Scholar 

  • Parker JC, Guyton AC, Taylor AE (1978) Pulmonary interstitial and capillary pressures estimated from intra-alveolar fluid pressures. J Appl Physiol: Respirat Environ Exercise Physiol 44:267–276

    Google Scholar 

  • Pearce ML, Yamashita J, Beazell J (1965) Measurements of pulmonary edema. Circ Res 16:482–488

    Google Scholar 

  • Permutt S (1979) Mechanical influences on water accumulation in the lungs. In: Fishman AP, Renkin EM (eds) Pulmonary edema. American Physiological Society, Bethesda, MD, pp 175–193

    Google Scholar 

  • Peterson BT, Petrini MF, Hyde RW, Schreiner BF (1978) Pulmonary tissue volume in dogs during pulmonary edema. J Appl Physiol: Respirat Environ Exercise Physiol 44:782–795

    Google Scholar 

  • Petrini MF, Peterson BT, Hyde RW (1978) Lung tissue volume and blood flow by rebreathing; theory. J Appl Physiol: Respirat Environ Exercise Physiol 44:795–802

    Google Scholar 

  • Pierce RJ, Brown DJ, Holmes M, Cumming G, Denison DM (1979) The estimation of lung volumes from chest radiographs using shape information. Thorax 34:726–734

    Google Scholar 

  • Pietra GG, Szidon JP, Leventhal MM, Fishman AP (1969) Hemoglobin as a tracer in hemodynamic pulmonary edema. Science 166:1643–1646

    Google Scholar 

  • Pietra GG, Szidon JP, Leventhal MM, Fishman AP (1971) Histamine and interstitial pulmonary edema in the dog. Circ Res 29:323–337

    Google Scholar 

  • Pietra GG, Szidon JP, Carpenter HS, Fishman AP (1974) Bronchial venular leakage during endotoxin shock. Am J Pathol 77:387–406

    Google Scholar 

  • Pietra GG, Magno M, Johns L, Fishman AP (1979) Bronchial veins and pulmonary edema. In: Fishman AP, Renkin EM (eds) Pulmonary edema. American Physiological Society, Bethesda, MD, pp 195–206

    Google Scholar 

  • Pistolesi M, Giuntini C (1978) Assessment of extravascular lung water. Radiol Clin North Am 16:551–574

    Google Scholar 

  • Prichard JS, Lee G de J (1979) Measurement of water distribution and transcapillary solute flux in dog lung by external radioactivity counting. Clin Sci 57:145–154

    Google Scholar 

  • Prockop DJ (1979) Collagen, elastin and proteoglycans: Matrix for fluid accumulation in the lung. In: Fishman AP, Renkin EM (eds) Pulmonary edema. American Physiological Society, Bethesda, MD, pp 125–136

    Google Scholar 

  • Quin JW, Shannon AD (1977) The influence of the lymph node on the protein concentration of efferent lymph leaving the node. J Physiol (Lond) 264:307–321

    Google Scholar 

  • Ramsey LH, Puckett W, Jose A, Lacy WW (1964) Pericapillary gas and water distribution volumes of the lung calculated from multiple indicator dilution curves. Circ Res 15:275–286

    Google Scholar 

  • Reid L (1968) Structural and functional reappraisal of the pulmonary artery system. In: Scientific basis of medicine: Annual reviews, Chap XVII. British Postgraduate Medical Federation. Athlone, London, pp 289–307

    Google Scholar 

  • Renkin EM (1977) Multiple pathways of capillary permeability. Circ Res 41:735–743

    Google Scholar 

  • Renkin EM, Curry FE (1978) Transport of water and solutes across capillary endothelium. In: Giebisch G (ed) Transport organs. Springer, Berlin Heidelberg New York (Membrane transport in biology, vol 4)

    Google Scholar 

  • Renkin EM, Watson PD, Sloop CH, Joyner WL, Curry FE (1977) Transport pathways for fluid and large molecules in microvascular endothelium of the dog's paw. Microvasc Res 14:205–214

    Google Scholar 

  • Rivera-Estrada C, Saltzman PW, Singer D, Katz LN (1958) Action of hypoxia on the pulmonary vasculature. Circ Res 6:10–14

    Google Scholar 

  • Robin ED, Theodore J (1976) Intracellular and subcellular oedema and dehydration. In: Porter R, O'Connor M (eds) Lung liquids. Ciba Foundation Symposium 38. Excerpta Medica, Amsterdam, pp 273–289

    Google Scholar 

  • Robin ED, Cross CE, Zelis R (1973) Medical progress: Pulmonary edema. N Engl J Med 288:239–246, 292–304

    Google Scholar 

  • Rose GL, Cassidy SS, Johnson RL Jr (1979) Diffusing capacity at different lung volumes during breath-holding and rebreathing. J Appl Physiol: Respirat Environ Exercise Physiol 47:32–37

    Google Scholar 

  • Rosenzweig DY, Hughes JMB, Glazier JB (1970) Effects of transpulmonary and vascular pressures on pulmonary blood volume in isolated lung. J Appl Physiol 28:553–560

    Google Scholar 

  • Rusznyak I, Foldi M, Szabo G (1967) Lymphatics and lymph circulation: Physiology and pathology, 2nd ed. Pergamon Press, Oxford, p 971

    Google Scholar 

  • Sackner MA, Greeneltch D, Heiman MS, Epstein S, Atkins N (1975) Diffusing capacity, capillary blood volume, pulmonary tissue volume and cardiac output measured by a rebreathing technique. Am Rev Resp Dis 111:157–165

    Google Scholar 

  • Schneeberger EE (1976) Alveolar-capillary membrane permeability to protein. In: Porter R, O'Connor O (eds) Lung liquids. Ciba Foundation Symposium 38. Excerpta Medica, Amsterdam

    Google Scholar 

  • Schneeberger E, Karnovsky M (1971) The influence of intravascular fluid volume on the permeability of newborn and adult mouse lungs to ultrastructural protein tracers. J Cell Biol 49:319–334

    Google Scholar 

  • Schneeberger EE, Karnovsky MJ (1976) Substructure of intercellular junctions in freeze-fractured alveolar-capillary membranes of mouse lung. Circ Res 38:404–411

    Google Scholar 

  • Schneeberger-Keeley EE, Karnovsky MJ (1968) The ultrastructural basis of alveolar-capillary membrane permeability to peroxidase used as a tracer. J Cell Biol 37:781–793

    Google Scholar 

  • Selinger SL, Bland RD, Demling RH, Staub NC (1975) Distribution volumes of [131I] albumin, [14C] sucrose, and 36Cl in sheep lung. J Appl Physiol 39:773–779

    Google Scholar 

  • Severinghaus JW, Catron C, Noble W (1972) A focusing electrode bridge for unilateral lung resistance. J Appl Physiol 32:526–530

    Google Scholar 

  • Severinghaus JN, Ozanne GM, Louderbough HC, Overland ES, Stafford MF (1979) Lung water and cardiac output determination by non-invasive trace gas analysis of dual breathholds in a single breath. In: Matthys H (ed) Biomedical engineering and data processing in pneumology. Karger, Basel (Progress in respiration research, vol 11, pp 280–296)

    Google Scholar 

  • Shirley HH, Wolfram CG, Wasserman K, Mayerson HS (1957) Capillary permeability to macromolecules: stretched pore phenomenon. Am J Physiol 190:189–193

    Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1975) Permeability of muscle capillaries to small hemepeptides. Evidence for the existence of patent transendothelial channels. J Cell Biol 64:586–607

    Google Scholar 

  • Smith HC, Gould VF, Cheney FW, Butler J (1974) Pathogenesis of hemodynamic pulmonary edema in excised dog lungs. J Appl Physiol 37:904–911

    Google Scholar 

  • Smith JC, Mitzner W, Proctor D (1977) Interdependence of extra-alveolar blood vessels and lung parenchyma in excised dog lobes. Fed Proc 36:493

    Google Scholar 

  • Snashall PD, Weidner WJ, Staub NC (1977) Extravascular lung water after extracellular fluid volume expansion in dogs. J Appl Physiol 42:624–629

    Google Scholar 

  • Snashall PD, Morgan B, Keyes S, McAnulty RJ, Mitchell-Heggs PF (1978) Radiographic appearances of acute pulmonary oedema in dogs related to regional extravascular lung water. Clin Sci Mol Med 54:10P

    Google Scholar 

  • Snashall PD, Nakahara K, Staub NC (1979) Estimation of perimicrovascular fluid pressure in isolated perfused dog lung lobes. J Appl Physiol: Respirat Environ Exercise Physiol 46:1003–1010

    Google Scholar 

  • Snashall PD, Keyes SJ, Morgan BM, Murphy K, Jones B (1980) Regional extravascular and interstitial lung water in normal dogs. J Appl Physiol: Environ Respirat Physiol 49:547–551

    Google Scholar 

  • Solomon AK (1968) Characterization of biological membranes by equivalent pores. J Gen Physiol 51:335S–336S (part 2)

    Google Scholar 

  • Staehelin LA, Hull BE (1978) Junctions between living cells. Scientific American 238:140–152

    Google Scholar 

  • Starling EH (1896) Absorption of fluids from the connective tissue spaces. J Physiol 19:312–326

    Google Scholar 

  • Staub NC (1970) The pathophysiology of pulmonary edema. Human Pathol 1:419–431

    Google Scholar 

  • Staub NC (1974) Pulmonary edema. Physiol Rev 54:674–811

    Google Scholar 

  • Staub NC, Nagano H, Pearce ML (1967) Pulmonary edema in dogs, especially the sequence of fluid accumulation in the lungs. J Appl Physiol 22:227–240

    Google Scholar 

  • Swinburne AJ, MacArthur CGC, Rhodes CG, Heather JD, Hughes JMB, Hyde RW (1979) Measurement of lung water (VW) in normal and edematous isolated dog lungs using inhaled C15O2 and injected H2 15O. Fed Proc 38:1264

    Google Scholar 

  • Taylor AE, Gibson WH, Granger HJ, Guyton AC (1973) The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume. Lymphology 6:192–208

    Google Scholar 

  • Taylor AE, Gaar KA Jr (1970) Estimation of equivalent pore radii of pulmonary capillary and alveolar membranes. Am J Physiol 218:1133–1140

    Google Scholar 

  • Teplitz C (1979) Pulmonary cellular and interstitial edema. In: Fishman AP, Renkin EM (eds) Pulmonary edema. American Physiological Society, Bethesda, MD, pp 71–111

    Google Scholar 

  • Uhley HN, Leeds SE, Sampson JJ, Friedman M (1962) Role of pulmonary lymphatics in chronic pulmonary edema. Circ Res 11:966–970

    Google Scholar 

  • Uhley HN, Leeds SE, Sampson JJ, Friedman M (1967) Right duct lymph flow in experimental heart failure following acute elevation of left atrial pressure. Circ Res 20:306–310

    Google Scholar 

  • Visscher MB, Haddy FJ, Stephens G (1956) The physiology and pharmacology of lung edema. Pharmacol Rev 8:389–434

    Google Scholar 

  • Vreim CE, Snashall PD, Demling RH, Staub NC (1976) Lung lymph and free interstitial fluid protein composition in sheep with edema. Am J Physiol 230:1650–1653

    Google Scholar 

  • Vreim CE, Ohkuda K, Staub NC (1977) Lymph drainage pathways from the dog lung. Int Union Physiol Sci Proc 113:794

    Google Scholar 

  • Weibel ER (1963) Morphometry of the human lung. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Weibel ER, Bachofen H (1979) Structural design of the alveolar septum and fluid exchange. In: Fishman AP, Renkin EM (eds) Pulmonary edema. American Physiological Society, Bethesda, MD, pp 1–20

    Google Scholar 

  • Weibel ER, Untersee P, Gil J, Zulauf M (1973) Morphometric estimation of pulmonary diffusion capacity. VI. Effect of varying positive pressure inflation of air spaces. Respir Physiol 18:285–308

    Google Scholar 

  • West JB, Dollery CT (1962) Uptake of oxygen-15 labelled CO2 compared with carbon-11-labelled CO2 in the lung. J Appl Physiol 17:9–13

    Google Scholar 

  • West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19:713–724

    Google Scholar 

  • Whayne TF Jr, Severinghaus JW (1968) Experimental hypoxic pulmonary edema in the rat. J Appl Physiol 25:729–732

    Google Scholar 

  • Wiederhielm C (1969) The interstitial space and lymphatic pressures in the bat wing. In: Fishman AP, Hecht HH (eds) The pulmonary circulation and interstitial space. University of Chicago Press, Chicago, pp 29–40

    Google Scholar 

  • Witte S (1965) Studies in extracellular circulation. Bibl Anat 5:76–80

    Google Scholar 

  • Yu PN (1969) Pulmonary blood volume in helath and disease. Lea & Febiger, Philadelphia, 314 p

    Google Scholar 

  • Yuceoglu YZ, Rubler S, Eshwar KP, Tchertkoff V, Grishman A (1971) Pulmonary edema associated with pulmonary embolism. A clinico-pathological study. Angiology 22:501–510

    Google Scholar 

  • Zierler KL (1962) Theoretical basis of indicator dilution methods for measuring flow and volume. Circ Res 10:393–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this chapter

Cite this chapter

Snashall, P.D., Hughes, J.M.B. (1981). Lung water balance. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 89. Reviews of Physiology, Biochemistry and Pharmacology, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035264

Download citation

  • DOI: https://doi.org/10.1007/BFb0035264

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10495-7

  • Online ISBN: 978-3-540-38500-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics